College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex] f(x) [/tex] is an exponential function of the form [tex] y = ab^x [/tex] where [tex] f(4.5) = 10 [/tex] and [tex] f(8.5) = 66 [/tex], find the value of [tex] f(14.5) [/tex], to the nearest hundredth.

Answer :

To solve the problem where [tex]\( f(x) = ab^x \)[/tex] is an exponential function, and you're given [tex]\( f(4.5) = 10 \)[/tex] and [tex]\( f(8.5) = 66 \)[/tex], and you need to find [tex]\( f(14.5) \)[/tex], follow these steps:

1. Set Up the Equations:
- From the information, we know:
[tex]\[
ab^{4.5} = 10
\][/tex]
[tex]\[
ab^{8.5} = 66
\][/tex]

2. Divide the Equations:
- Divide the second equation by the first to eliminate [tex]\( a \)[/tex]:
[tex]\[
\frac{ab^{8.5}}{ab^{4.5}} = \frac{66}{10}
\][/tex]
- Simplify this to:
[tex]\[
b^{8.5 - 4.5} = 6.6
\][/tex]
[tex]\[
b^4 = 6.6
\][/tex]

3. Solve for [tex]\( b \)[/tex]:
- To find [tex]\( b \)[/tex], take the fourth root of 6.6:
[tex]\[
b = 6.6^{1/4}
\][/tex]
- This gives us [tex]\( b \approx 1.6028 \)[/tex].

4. Solve for [tex]\( a \)[/tex]:
- Use the first equation to solve for [tex]\( a \)[/tex] with the value of [tex]\( b \)[/tex]:
[tex]\[
10 = a \times (1.6028)^{4.5}
\][/tex]
- Isolate [tex]\( a \)[/tex]:
[tex]\[
a = \frac{10}{(1.6028)^{4.5}}
\][/tex]
- This gives us [tex]\( a \approx 1.1968 \)[/tex].

5. Find [tex]\( f(14.5) \)[/tex]:
- Plug [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the equation [tex]\( f(x) = ab^x \)[/tex] to find [tex]\( f(14.5) \)[/tex]:
[tex]\[
f(14.5) = 1.1968 \times (1.6028)^{14.5}
\][/tex]
- Calculate this to get [tex]\( f(14.5) \approx 1119.08 \)[/tex].

Therefore, the value of [tex]\( f(14.5) \)[/tex] is approximately 1119.08, rounded to the nearest hundredth.