Answer :
To solve the problem, we need to evaluate the function [tex]\( f(x) \)[/tex] at [tex]\( x = 3 \)[/tex].
The given function is:
[tex]\[ f(x) = \left(\frac{1}{9}\right)\left(9^x\right). \][/tex]
Let's substitute [tex]\( x = 3 \)[/tex] into the function:
1. Calculate [tex]\( 9^3 \)[/tex]:
[tex]\[
9^3 = 9 \times 9 \times 9 = 729.
\][/tex]
2. Multiply the result by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
f(3) = \left(\frac{1}{9}\right) \times 729 = \frac{729}{9} = 81.
\][/tex]
So, the value of [tex]\( f(3) \)[/tex] is 81.
Therefore, the correct answer is:
B. 81
The given function is:
[tex]\[ f(x) = \left(\frac{1}{9}\right)\left(9^x\right). \][/tex]
Let's substitute [tex]\( x = 3 \)[/tex] into the function:
1. Calculate [tex]\( 9^3 \)[/tex]:
[tex]\[
9^3 = 9 \times 9 \times 9 = 729.
\][/tex]
2. Multiply the result by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
f(3) = \left(\frac{1}{9}\right) \times 729 = \frac{729}{9} = 81.
\][/tex]
So, the value of [tex]\( f(3) \)[/tex] is 81.
Therefore, the correct answer is:
B. 81