College

If [tex]f(x) = 7x^6 \cos^{-1} x[/tex], find [tex]f^{\prime}(x)[/tex].

1) [tex]42x^5 \cos^{-1} x + 7x^6 \frac{1}{1 + x^2}[/tex]
2) [tex]42x^5 \cos^{-1} x - 7x^6 \frac{1}{\sqrt{1-x^2}}[/tex]
3) [tex]42x^5 \cos^{-1} x - 7x^6 \cos^{-2} x[/tex]
4) [tex]42x^5 \cos^{-1} x + 7x^6 \frac{1}{\sqrt{1-x^2}}[/tex]

Answer :

To find [tex]\( f'(x) \)[/tex] for the function [tex]\( f(x) = 7x^6 \cos^{-1}(x) \)[/tex], we will apply the product rule for differentiation. The product rule states that if you have a function in the form of [tex]\( u(x) \cdot v(x) \)[/tex], then its derivative is given by [tex]\( u'(x)v(x) + u(x)v'(x) \)[/tex].

For [tex]\( f(x) = 7x^6 \cos^{-1}(x) \)[/tex]:

1. Identify the two parts of the product:
- [tex]\( u(x) = 7x^6 \)[/tex]
- [tex]\( v(x) = \cos^{-1}(x) \)[/tex]

2. Find the derivative of each part:
- The derivative of [tex]\( u(x) = 7x^6 \)[/tex] is [tex]\( u'(x) = 42x^5 \)[/tex] (using the power rule).
- The derivative of [tex]\( v(x) = \cos^{-1}(x) \)[/tex] is [tex]\( v'(x) = -\frac{1}{\sqrt{1-x^2}} \)[/tex] (this is a known derivative).

3. Apply the product rule:
[tex]\[
f'(x) = u'(x)v(x) + u(x)v'(x)
\][/tex]

4. Substitute the derivatives and functions:
[tex]\[
f'(x) = 42x^5 \cdot \cos^{-1}(x) + 7x^6 \cdot \left(-\frac{1}{\sqrt{1-x^2}}\right)
\][/tex]

5. Simplify the expression:
[tex]\[
f'(x) = 42x^5 \cos^{-1}(x) - \frac{7x^6}{\sqrt{1-x^2}}
\][/tex]

This gives us the final result for the derivative:
[tex]\[
f'(x) = 42x^5 \cos^{-1}(x) - \frac{7x^6}{\sqrt{1-x^2}}
\][/tex]

Therefore, the correct choice is:

2) [tex]\( 42x^5 \cos^{-1}(x) - 7x^6 \frac{1}{\sqrt{1-x^2}} \)[/tex]