College

If [tex]$f(x)=\left(\frac{1}{9}\right)\left(9^x\right)$[/tex], what is [tex]$f(3)$[/tex]?

A. 81
B. 729
C. [tex]$\frac{1}{729}$[/tex]
D. [tex][tex]$\frac{1}{81}$[/tex][/tex]

Answer :

To solve the problem, you need to evaluate the function [tex]\( f(x) = \left(\frac{1}{9}\right) \left(9^x\right) \)[/tex] at [tex]\( x = 3 \)[/tex].

Let's go through the solution step by step:

1. Substitute [tex]\( x = 3 \)[/tex] into the function:
[tex]\[
f(3) = \left(\frac{1}{9}\right) \left(9^3\right)
\][/tex]

2. Calculate [tex]\( 9^3 \)[/tex]:
- [tex]\( 9^3 \)[/tex] means you multiply 9 by itself twice:
[tex]\[
9 \times 9 \times 9 = 81 \times 9 = 729
\][/tex]

3. Multiply by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
f(3) = \left(\frac{1}{9}\right) \times 729
\][/tex]

4. Perform the division:
- Divide 729 by 9:
[tex]\[
\frac{729}{9} = 81
\][/tex]

So, the value of [tex]\( f(3) \)[/tex] is [tex]\( 81 \)[/tex].

The correct answer is:
A. 81