Answer :
To find the value of [tex]\( f(-3) \)[/tex], we need to evaluate the function [tex]\( f(x) = 3x^2 - 10 \)[/tex] at [tex]\( x = -3 \)[/tex].
Here is a step-by-step solution:
1. Substitute [tex]\( -3 \)[/tex] for [tex]\( x \)[/tex] in the function:
We have [tex]\( f(-3) = 3(-3)^2 - 10 \)[/tex].
2. Calculate [tex]\((-3)^2\)[/tex]:
[tex]\((-3)^2\)[/tex] means [tex]\(-3 \times -3\)[/tex], which equals [tex]\(9\)[/tex].
3. Multiply by 3:
Next, multiply the result by 3. So, [tex]\(3 \times 9 = 27\)[/tex].
4. Subtract 10 from the result:
Finally, subtract 10 from 27. So, [tex]\(27 - 10 = 17\)[/tex].
Thus, the value of [tex]\( f(-3) \)[/tex] is [tex]\( \boxed{17} \)[/tex].
Here is a step-by-step solution:
1. Substitute [tex]\( -3 \)[/tex] for [tex]\( x \)[/tex] in the function:
We have [tex]\( f(-3) = 3(-3)^2 - 10 \)[/tex].
2. Calculate [tex]\((-3)^2\)[/tex]:
[tex]\((-3)^2\)[/tex] means [tex]\(-3 \times -3\)[/tex], which equals [tex]\(9\)[/tex].
3. Multiply by 3:
Next, multiply the result by 3. So, [tex]\(3 \times 9 = 27\)[/tex].
4. Subtract 10 from the result:
Finally, subtract 10 from 27. So, [tex]\(27 - 10 = 17\)[/tex].
Thus, the value of [tex]\( f(-3) \)[/tex] is [tex]\( \boxed{17} \)[/tex].