Answer :
To find [tex]$f(2)$[/tex] for the function
[tex]$$
f(x) = 3^{(x+4)},
$$[/tex]
we substitute [tex]$x=2$[/tex] into the function:
1. Substitute [tex]$x=2$[/tex]:
[tex]$$
f(2) = 3^{(2+4)}.
$$[/tex]
2. Calculate the exponent:
[tex]$$
2+4=6.
$$[/tex]
3. Now the expression becomes:
[tex]$$
f(2) = 3^6.
$$[/tex]
4. Compute [tex]$3^6$[/tex]:
[tex]$$
3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729.
$$[/tex]
Thus, the value of [tex]$f(2)$[/tex] is [tex]$\boxed{729}$[/tex].
[tex]$$
f(x) = 3^{(x+4)},
$$[/tex]
we substitute [tex]$x=2$[/tex] into the function:
1. Substitute [tex]$x=2$[/tex]:
[tex]$$
f(2) = 3^{(2+4)}.
$$[/tex]
2. Calculate the exponent:
[tex]$$
2+4=6.
$$[/tex]
3. Now the expression becomes:
[tex]$$
f(2) = 3^6.
$$[/tex]
4. Compute [tex]$3^6$[/tex]:
[tex]$$
3^6 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 729.
$$[/tex]
Thus, the value of [tex]$f(2)$[/tex] is [tex]$\boxed{729}$[/tex].