Answer :
We start by noting that the formula for the surface area of a sphere is given by
[tex]$$
\text{Surface Area} = 4 \pi r^2,
$$[/tex]
where [tex]$r$[/tex] is the radius of the sphere.
Given that the radius is [tex]$r = 2 \text{ cm}$[/tex], we substitute this value into the formula:
[tex]$$
\text{Surface Area} = 4 \pi (2)^2.
$$[/tex]
Since [tex]$(2)^2 = 4$[/tex], the equation becomes
[tex]$$
\text{Surface Area} = 4 \pi \cdot 4.
$$[/tex]
Multiplying the constants, we get
[tex]$$
\text{Surface Area} = 16 \pi.
$$[/tex]
To find an approximate numerical value, we use [tex]$\pi \approx 3.1416$[/tex]:
[tex]$$
\text{Surface Area} \approx 16 \times 3.1416 \approx 50.2656 \text{ cm}^2.
$$[/tex]
This numerical value is approximately [tex]$50.3 \text{ cm}^2$[/tex]. Among the provided options, the closest match is:
C. [tex]$50.3 \text{ cm}^2$[/tex].
[tex]$$
\text{Surface Area} = 4 \pi r^2,
$$[/tex]
where [tex]$r$[/tex] is the radius of the sphere.
Given that the radius is [tex]$r = 2 \text{ cm}$[/tex], we substitute this value into the formula:
[tex]$$
\text{Surface Area} = 4 \pi (2)^2.
$$[/tex]
Since [tex]$(2)^2 = 4$[/tex], the equation becomes
[tex]$$
\text{Surface Area} = 4 \pi \cdot 4.
$$[/tex]
Multiplying the constants, we get
[tex]$$
\text{Surface Area} = 16 \pi.
$$[/tex]
To find an approximate numerical value, we use [tex]$\pi \approx 3.1416$[/tex]:
[tex]$$
\text{Surface Area} \approx 16 \times 3.1416 \approx 50.2656 \text{ cm}^2.
$$[/tex]
This numerical value is approximately [tex]$50.3 \text{ cm}^2$[/tex]. Among the provided options, the closest match is:
C. [tex]$50.3 \text{ cm}^2$[/tex].