Answer :
We are given the formula for converting Celsius ([tex]$C$[/tex]) to Fahrenheit ([tex]$F$[/tex]):
[tex]$$
F = \frac{9}{5}C + 32
$$[/tex]
Given that [tex]$F = 62$[/tex], we substitute this into the equation:
[tex]$$
62 = \frac{9}{5}C + 32
$$[/tex]
Step 1: Isolate the term with [tex]$C$[/tex].
Subtract [tex]$32$[/tex] from both sides:
[tex]$$
62 - 32 = \frac{9}{5}C
$$[/tex]
Simplifying the left-hand side:
[tex]$$
30 = \frac{9}{5}C
$$[/tex]
Step 2: Solve for [tex]$C$[/tex].
Multiply both sides by [tex]$\frac{5}{9}$[/tex] to isolate [tex]$C$[/tex]:
[tex]$$
C = 30 \times \frac{5}{9}
$$[/tex]
Simplify the multiplication:
[tex]$$
C = \frac{150}{9} \approx 16.6667
$$[/tex]
Step 3: Round to one decimal place.
Rounding [tex]$16.6667$[/tex] to one decimal place gives:
[tex]$$
C \approx 16.7 \text{ degrees}
$$[/tex]
Thus, the correct answer is [tex]$\boxed{16.7}$[/tex].
[tex]$$
F = \frac{9}{5}C + 32
$$[/tex]
Given that [tex]$F = 62$[/tex], we substitute this into the equation:
[tex]$$
62 = \frac{9}{5}C + 32
$$[/tex]
Step 1: Isolate the term with [tex]$C$[/tex].
Subtract [tex]$32$[/tex] from both sides:
[tex]$$
62 - 32 = \frac{9}{5}C
$$[/tex]
Simplifying the left-hand side:
[tex]$$
30 = \frac{9}{5}C
$$[/tex]
Step 2: Solve for [tex]$C$[/tex].
Multiply both sides by [tex]$\frac{5}{9}$[/tex] to isolate [tex]$C$[/tex]:
[tex]$$
C = 30 \times \frac{5}{9}
$$[/tex]
Simplify the multiplication:
[tex]$$
C = \frac{150}{9} \approx 16.6667
$$[/tex]
Step 3: Round to one decimal place.
Rounding [tex]$16.6667$[/tex] to one decimal place gives:
[tex]$$
C \approx 16.7 \text{ degrees}
$$[/tex]
Thus, the correct answer is [tex]$\boxed{16.7}$[/tex].