College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]f(5) = 288.9[/tex] when [tex]r = 0.05[/tex] for the function [tex]f(t) = P e^{rt}[/tex], then what is the approximate value of [tex]P[/tex]?

A. 371
B. 3520
C. 225
D. 24

Answer :

To solve this problem, we need to find the value of [tex]\( P \)[/tex] using the function [tex]\( f(t) = P e^{rt} \)[/tex]. We're given the values:

- [tex]\( f(5) = 288.9 \)[/tex]
- [tex]\( r = 0.05 \)[/tex]
- [tex]\( t = 5 \)[/tex]

The function becomes [tex]\( f(t) = P e^{0.05 \times 5} \)[/tex].

Here is how you calculate it step-by-step:

1. Substitute the Given Values:
Plug the values into the function:
[tex]\[
288.9 = P \times e^{0.25}
\][/tex]
because [tex]\( 0.05 \times 5 = 0.25 \)[/tex].

2. Solve for [tex]\( P \)[/tex]:
Rearrange the equation to solve for [tex]\( P \)[/tex]:
[tex]\[
P = \frac{288.9}{e^{0.25}}
\][/tex]

3. Calculate [tex]\( e^{0.25} \)[/tex]:
Using the approximate value for [tex]\( e^{0.25} \)[/tex].

4. Calculate [tex]\( P \)[/tex]:
Divide [tex]\( 288.9 \)[/tex] by the calculated value of [tex]\( e^{0.25} \)[/tex] to find [tex]\( P \)[/tex].

5. Round the Result:
Round the result to the nearest integer since the options provided are integers.

After completing these steps, we find that the approximate value of [tex]\( P \)[/tex] is 225.

Therefore, the correct answer is C. 225.