High School

What is [tex]\left(3x^4 + 2 - 2x^3\right) + \left(4x^3 + 4x^4\right)[/tex]?

A. [tex]7x^4 + 2x^3 + 2[/tex]
B. [tex]7x^7 + x^8 + 2[/tex]
C. [tex]7x^4 + 7x^3 + 2[/tex]
D. [tex]7x^7 + 2x + 2[/tex]

Answer :

To solve the expression [tex]\((3x^4 + 2 - 2x^3) + (4x^3 + 4x^4)\)[/tex], we need to combine like terms. Here's a step-by-step approach:

1. Identify Like Terms:
- Like terms are those terms that have the same variable raised to the same power. In this case, we have terms with [tex]\(x^4\)[/tex] and [tex]\(x^3\)[/tex], along with a constant.

2. Combine [tex]\(x^4\)[/tex] Terms:
- From the expression, the [tex]\(x^4\)[/tex] terms are [tex]\(3x^4\)[/tex] and [tex]\(4x^4\)[/tex].
- Combine them:
[tex]\[
3x^4 + 4x^4 = 7x^4
\][/tex]

3. Combine [tex]\(x^3\)[/tex] Terms:
- The [tex]\(x^3\)[/tex] terms are [tex]\(-2x^3\)[/tex] and [tex]\(4x^3\)[/tex].
- Combine them:
[tex]\[
-2x^3 + 4x^3 = 2x^3
\][/tex]

4. Identify Constant Term:
- There is only one constant term, which is [tex]\(+2\)[/tex].
- This remains as it is.

5. Write the Simplified Expression:
- Combine the results of the like terms to get the final simplified expression:
[tex]\[
7x^4 + 2x^3 + 2
\][/tex]

So, the correct simplified expression is [tex]\(7x^4 + 2x^3 + 2\)[/tex].

Based on these steps, the answer is A. [tex]\(7x^4 + 2x^3 + 2\)[/tex].