College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]f(5)=288.9[/tex] when [tex]r=0.05[/tex] for the function [tex]f(t)=P e^t[/tex], then what is the approximate value of [tex]P[/tex]?

A. 371
B. 24
C. 225
D. 3520

Answer :

Let's solve the problem step-by-step to find the approximate value of [tex]\( P \)[/tex].

We are given the function [tex]\( f(t) = P e^{rt} \)[/tex] and specific values for [tex]\( f(5) \)[/tex], [tex]\( r \)[/tex], and [tex]\( t \)[/tex]:

1. [tex]\( f(5) = 288.9 \)[/tex]
2. [tex]\( r = 0.05 \)[/tex]
3. [tex]\( t = 5 \)[/tex]

We need to find the value of [tex]\( P \)[/tex]. Here's the step-by-step solution:

1. Plug the given values into the function:
[tex]\[
f(5) = P e^{0.05 \times 5}
\][/tex]

2. Simplify the exponent:
[tex]\[
0.05 \times 5 = 0.25
\][/tex]

3. Substitute this back into the function:
[tex]\[
288.9 = P e^{0.25}
\][/tex]

4. Calculate [tex]\( e^{0.25} \)[/tex]:
[tex]\[
e^{0.25} \approx 1.284
\][/tex]

5. Now, we can rewrite the equation:
[tex]\[
288.9 = P \times 1.284
\][/tex]

6. To find [tex]\( P \)[/tex], divide both sides of the equation by 1.284:
[tex]\[
P = \frac{288.9}{1.284} \approx 225
\][/tex]

Therefore, the approximate value of [tex]\( P \)[/tex] is 225.

So, the correct answer is:
C. 225