Answer :
Sure, let's solve this problem step by step.
We're given the function [tex]\( f(t) = P e^{rt} \)[/tex], and we know:
- [tex]\( f(4) = 246.4 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
- [tex]\( t = 4 \)[/tex]
We're asked to find the approximate value of [tex]\( P \)[/tex].
1. Write down the equation: The function given is [tex]\( f(t) = P e^{rt} \)[/tex].
2. Substitute the known values: We need to find [tex]\( P \)[/tex] using the equation [tex]\( f(4) = P e^{0.04 \times 4} \)[/tex].
This becomes:
[tex]\[
246.4 = P \cdot e^{0.16}
\][/tex]
3. Solve for [tex]\( P \)[/tex]: To find [tex]\( P \)[/tex], rearrange the equation:
[tex]\[
P = \frac{246.4}{e^{0.16}}
\][/tex]
4. Calculate [tex]\( e^{0.16} \)[/tex]: The approximate value of [tex]\( e^{0.16} \)[/tex] is used in calculating [tex]\( P \)[/tex].
5. Divide to find [tex]\( P \)[/tex]: Substitute the value of [tex]\( e^{0.16} \)[/tex] to solve for [tex]\( P \)[/tex].
[tex]\[
P \approx 209.97
\][/tex]
Therefore, after solving, the approximate value of [tex]\( P \)[/tex] is closest to 210.
The correct answer is B. 210.
We're given the function [tex]\( f(t) = P e^{rt} \)[/tex], and we know:
- [tex]\( f(4) = 246.4 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
- [tex]\( t = 4 \)[/tex]
We're asked to find the approximate value of [tex]\( P \)[/tex].
1. Write down the equation: The function given is [tex]\( f(t) = P e^{rt} \)[/tex].
2. Substitute the known values: We need to find [tex]\( P \)[/tex] using the equation [tex]\( f(4) = P e^{0.04 \times 4} \)[/tex].
This becomes:
[tex]\[
246.4 = P \cdot e^{0.16}
\][/tex]
3. Solve for [tex]\( P \)[/tex]: To find [tex]\( P \)[/tex], rearrange the equation:
[tex]\[
P = \frac{246.4}{e^{0.16}}
\][/tex]
4. Calculate [tex]\( e^{0.16} \)[/tex]: The approximate value of [tex]\( e^{0.16} \)[/tex] is used in calculating [tex]\( P \)[/tex].
5. Divide to find [tex]\( P \)[/tex]: Substitute the value of [tex]\( e^{0.16} \)[/tex] to solve for [tex]\( P \)[/tex].
[tex]\[
P \approx 209.97
\][/tex]
Therefore, after solving, the approximate value of [tex]\( P \)[/tex] is closest to 210.
The correct answer is B. 210.