College

If [tex]$f(4) = 246.4$[/tex] when [tex]$r = 0.04$[/tex] for the function [tex]$f(t) = P e^{rt}$[/tex], then what is the approximate value of [tex]$P$[/tex]?

A. 1220
B. 210
C. 50
D. 289

Answer :

Let's solve the problem step-by-step to find the approximate value of [tex]\( P \)[/tex].

We are given the function [tex]\( f(t) = P \cdot e^{rt} \)[/tex] and specific values: [tex]\( f(4) = 246.4 \)[/tex] and [tex]\( r = 0.04 \)[/tex].

To find [tex]\( P \)[/tex], we can use the equation for the function at [tex]\( t = 4 \)[/tex]:

[tex]\[ f(4) = P \cdot e^{0.04 \times 4} \][/tex]

Substitute the given value of [tex]\( f(4) \)[/tex]:

[tex]\[ 246.4 = P \cdot e^{0.16} \][/tex]

To solve for [tex]\( P \)[/tex], we rearrange the equation to:

[tex]\[ P = \frac{246.4}{e^{0.16}} \][/tex]

Now, we need the value of [tex]\( e^{0.16} \)[/tex]. Let's say [tex]\( e^{0.16} \approx 1.1735 \)[/tex].

Substituting this into the equation:

[tex]\[ P = \frac{246.4}{1.1735} \][/tex]

Perform the division:

[tex]\[ P \approx 209.97 \][/tex]

This result is approximately 210 when rounded to the nearest integer. Therefore, the approximate value of [tex]\( P \)[/tex] is:

B. 210