Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]f(4) = 246.4[/tex] when [tex]r = 0.04[/tex] for the function [tex]f(t) = P e^{rt}[/tex], then what is the approximate value of [tex]P[/tex]?

A. 1220
B. 50
C. 210
D. 289

Answer :

To find the approximate value of [tex]\( P \)[/tex] in the function [tex]\( f(t) = P \cdot e^{rt} \)[/tex] given that [tex]\( f(4) = 246.4 \)[/tex] when [tex]\( r = 0.04 \)[/tex], we can follow these steps:

1. Understand the Function:
The function is given as [tex]\( f(t) = P \cdot e^{rt} \)[/tex]. This implies that the value of the function for a specific time [tex]\( t \)[/tex] is determined by the initial value [tex]\( P \)[/tex] and the growth factor [tex]\( e^{rt} \)[/tex].

2. Substitute the Known Values:
We need to substitute the known values into the function. We have:
- [tex]\( f(4) = 246.4 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
- [tex]\( t = 4 \)[/tex]

3. Setting Up the Equation:
Substitute these into the equation:
[tex]\[
246.4 = P \cdot e^{0.04 \cdot 4}
\][/tex]

4. Calculate [tex]\( e^{0.04 \cdot 4} \)[/tex]:
Calculate the exponent part:
[tex]\[
e^{0.16} \approx 1.1735
\][/tex]
This is the value of the growth factor when you multiply the rate and time.

5. Solve for [tex]\( P \)[/tex]:
Rearrange the equation to solve for [tex]\( P \)[/tex]:
[tex]\[
P = \frac{246.4}{1.1735}
\][/tex]

6. Calculate the Value of [tex]\( P \)[/tex]:
When you calculate [tex]\( \frac{246.4}{1.1735} \)[/tex], you get approximately:
[tex]\[
P \approx 210
\][/tex]

Therefore, the approximate value of [tex]\( P \)[/tex] is 210. The correct choice is C. 210.