High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$f(4)=246.4$[/tex] when [tex]$r=0.04$[/tex] for the function [tex]$f(t)=\rho e^t$[/tex], then what is the approximate value of [tex][tex]$\rho$[/tex][/tex]?

A. 50
B. 289
C. 1220
D. 210

Answer :

To solve this problem, we need to find the value of [tex]\( \rho \)[/tex] when given the function [tex]\( f(t) = \rho e^{rt} \)[/tex], where we know that [tex]\( f(4) = 246.4 \)[/tex] and [tex]\( r = 0.04 \)[/tex].

Here's a step-by-step breakdown of how to solve it:

1. Understand the Function: The function provided is [tex]\( f(t) = \rho e^{rt} \)[/tex]. This is an exponential function where [tex]\( \rho \)[/tex] is the initial value or the coefficient, [tex]\( r \)[/tex] is the growth rate, and [tex]\( t \)[/tex] is the time.

2. Substitute the Known Values: We have:
- [tex]\( f(4) = 246.4 \)[/tex]
- [tex]\( r = 0.04 \)[/tex]
- [tex]\( t = 4 \)[/tex]

Plug these into the function:
[tex]\[
246.4 = \rho e^{0.04 \times 4}
\][/tex]

3. Simplify the Exponential Expression: Calculate [tex]\( e^{0.04 \times 4} \)[/tex].
- First calculate [tex]\( 0.04 \times 4 = 0.16 \)[/tex].
- Then compute [tex]\( e^{0.16} \)[/tex].

4. Solve for [tex]\( \rho \)[/tex]: Now we need to express [tex]\( \rho \)[/tex] in terms of known values:
[tex]\[
\rho = \frac{246.4}{e^{0.16}}
\][/tex]

5. Numerical Evaluation: Substitute the computed value of [tex]\( e^{0.16} \)[/tex] to find [tex]\( \rho \)[/tex].
- Let's assume the calculation gives a result of approximately 209.97 for [tex]\( \rho \)[/tex].

6. Determine the Closest Option: Finally, compare this result to the multiple-choice answers:
- A. 50
- B. 289
- C. 1220
- D. 210

The number 209.97 is closest to option D. 210.

Therefore, the approximate value of [tex]\( P \)[/tex] is [tex]\( \boxed{210} \)[/tex].