College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ If [tex]$f(3)=191.5$[/tex] when [tex]$r=0.03$[/tex] for the function [tex][tex]$f(t)=P e^t$[/tex][/tex], then what is the approximate value of [tex]$P$[/tex]?

A. 78
B. 210
C. 471
D. 175

Answer :

To solve for the approximate value of [tex]\( P \)[/tex] in the function [tex]\( f(t) = P e^{rt} \)[/tex], where [tex]\( f(3) = 191.5 \)[/tex] and [tex]\( r = 0.03 \)[/tex], we can follow these steps:

1. Start with the given function:
[tex]\( f(t) = P e^{rt} \)[/tex].

2. Substitute the known values into the function:
We know that [tex]\( f(3) = 191.5 \)[/tex], [tex]\( r = 0.03 \)[/tex], and [tex]\( t = 3 \)[/tex]. So,
[tex]\( 191.5 = P e^{0.03 \times 3} \)[/tex].

3. Calculate the exponent:
First, calculate [tex]\( 0.03 \times 3 = 0.09 \)[/tex].

4. Evaluate the exponential term:
Find [tex]\( e^{0.09} \)[/tex]. This is approximately equal to [tex]\( 1.094 \)[/tex] (rounded to three decimal places).

5. Solve for [tex]\( P \)[/tex]:
Replace [tex]\( e^{0.09} \)[/tex] with its approximate value:
[tex]\( 191.5 = P \times 1.094 \)[/tex].

6. Isolate [tex]\( P \)[/tex]:
Divide both sides by [tex]\( 1.094 \)[/tex] to solve for [tex]\( P \)[/tex]:
[tex]\( P = \frac{191.5}{1.094} \)[/tex].

7. Calculate [tex]\( P \)[/tex]:
[tex]\( P \approx 175.02 \)[/tex].

The approximate value of [tex]\( P \)[/tex] is 175. Therefore, the closest option is:

D. 175