High School

If [tex]f(0) = 5[/tex], [tex]f(0.5) = 6[/tex], [tex]f(1) = 7[/tex], what is the value of the integral [tex]\int_0^1 f(x) \, dx[/tex] using the Trapezoidal Rule?

A. 12
B. 6
C. 24
D. 18

Answer :

To find the value of the integral [tex]\int_0^1 f(x) \, dx[/tex] using the Trapezoidal rule, we will approximate the area under the curve using trapezoids. Given are the values:

[tex]f(0) = 5, \quad f(0.5) = 6, \quad f(1) = 7.[/tex]

Step-by-step, the procedure includes:

  1. Divide the interval [0,1] into sub-intervals:

    In this case, since we have values given at [tex]x = 0, 0.5, \text{and} 1[/tex], we have two sub-intervals: [tex][0, 0.5][/tex] and [tex][0.5, 1][/tex].

  2. Apply the Trapezoidal rule:

    The Trapezoidal rule formula for an interval [tex][a, b][/tex] is:

    [tex]\int_a^b f(x) \, dx \approx \frac{b-a}{2} \left( f(a) + f(b) \right).[/tex]

    We will apply this formula over the two sub-intervals:

    • For the interval [tex][0, 0.5][/tex]:
      [tex]\int_0^{0.5} f(x) \, dx \approx \frac{0.5 - 0}{2} \left( f(0) + f(0.5) \right) = 0.25 \times (5 + 6) = 2.75.[/tex]

    • For the interval [tex][0.5, 1][/tex]:
      [tex]\int_{0.5}^{1} f(x) \, dx \approx \frac{1 - 0.5}{2} \left( f(0.5) + f(1) \right) = 0.25 \times (6 + 7) = 3.25.[/tex]

  3. Add the areas of the trapezoids to estimate the entire integral over [tex][0, 1][/tex]:

    [tex]\int_0^1 f(x) \, dx = 2.75 + 3.25 = 6.[/tex]

Therefore, the value of the integral [tex]\int_0^1 f(x) \ dx[/tex] using the Trapezoidal rule is [tex]6[/tex].

This approach is intuitive because it approximates the function [tex]f(x)[/tex] by linear segments between the given points and calculates the area under these linear segments, which is a good approximation if the function is reasonably smooth over the interval.