Answer :
To find the water pressure at the bottom of a container, you can use the formula for pressure:
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
1. Identify the given values:
- Total force exerted by the water ([tex]\( F \)[/tex]) = 450 newtons
- Area of the bottom of the container ([tex]\( A \)[/tex]) = 2 square meters
2. Substitute the given values into the pressure formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} \][/tex]
3. Calculate the pressure:
[tex]\[ \text{Pressure} = 225 \, \text{N/m}^2 \][/tex]
Note that pressure in N/m² is also called Pascals (Pa).
4. Convert Pascals to kilopascals (kPa):
Since 1 kPa = 1000 Pa, divide the pressure in Pascals by 1000 to convert it to kPa:
[tex]\[ \text{Pressure in kPa} = \frac{225 \, \text{Pa}}{1000} = 0.225 \, \text{kPa} \][/tex]
Therefore, the water pressure at the bottom of the container is 0.225 kPa. So, the correct answer is:
A. 0.225 kPa
[tex]\[ \text{Pressure} = \frac{\text{Force}}{\text{Area}} \][/tex]
1. Identify the given values:
- Total force exerted by the water ([tex]\( F \)[/tex]) = 450 newtons
- Area of the bottom of the container ([tex]\( A \)[/tex]) = 2 square meters
2. Substitute the given values into the pressure formula:
[tex]\[ \text{Pressure} = \frac{450 \, \text{newtons}}{2 \, \text{square meters}} \][/tex]
3. Calculate the pressure:
[tex]\[ \text{Pressure} = 225 \, \text{N/m}^2 \][/tex]
Note that pressure in N/m² is also called Pascals (Pa).
4. Convert Pascals to kilopascals (kPa):
Since 1 kPa = 1000 Pa, divide the pressure in Pascals by 1000 to convert it to kPa:
[tex]\[ \text{Pressure in kPa} = \frac{225 \, \text{Pa}}{1000} = 0.225 \, \text{kPa} \][/tex]
Therefore, the water pressure at the bottom of the container is 0.225 kPa. So, the correct answer is:
A. 0.225 kPa