Answer :
Sure! Let's identify the slope and the [tex]\( y \)[/tex]-intercept from the linear equation given in the form:
[tex]\[ y - 15x + 182 = 0 \][/tex]
To find the slope and the [tex]\( y \)[/tex]-intercept, we need to rewrite this equation into the slope-intercept form, which is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the [tex]\( y \)[/tex]-intercept.
Step 1: Start with the original equation:
[tex]\[ y - 15x + 182 = 0 \][/tex]
Step 2: Solve for [tex]\( y \)[/tex] to get it by itself on one side of the equation:
Add [tex]\( 15x \)[/tex] to both sides:
[tex]\[ y = 15x - 182 \][/tex]
Now, the equation is in the slope-intercept form [tex]\( y = mx + b \)[/tex].
Step 3: Identify the slope and the [tex]\( y \)[/tex]-intercept from the equation [tex]\( y = 15x - 182 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is the coefficient of [tex]\( x \)[/tex]. So, the slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]) is the constant term. So, the [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].
Therefore, for the equation [tex]\( y = 15x - 182 \)[/tex]:
- The slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].
[tex]\[ y - 15x + 182 = 0 \][/tex]
To find the slope and the [tex]\( y \)[/tex]-intercept, we need to rewrite this equation into the slope-intercept form, which is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the [tex]\( y \)[/tex]-intercept.
Step 1: Start with the original equation:
[tex]\[ y - 15x + 182 = 0 \][/tex]
Step 2: Solve for [tex]\( y \)[/tex] to get it by itself on one side of the equation:
Add [tex]\( 15x \)[/tex] to both sides:
[tex]\[ y = 15x - 182 \][/tex]
Now, the equation is in the slope-intercept form [tex]\( y = mx + b \)[/tex].
Step 3: Identify the slope and the [tex]\( y \)[/tex]-intercept from the equation [tex]\( y = 15x - 182 \)[/tex]:
- The slope ([tex]\( m \)[/tex]) is the coefficient of [tex]\( x \)[/tex]. So, the slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]) is the constant term. So, the [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].
Therefore, for the equation [tex]\( y = 15x - 182 \)[/tex]:
- The slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].