High School

Identify the slope and [tex]y[/tex]-intercept for the linear equation below.

[tex]y = 15x + 182[/tex]

[tex]y[/tex]-intercept [tex]=[/tex] 182

slope [tex]=[/tex] 15

Answer :

Sure! Let's identify the slope and the [tex]\( y \)[/tex]-intercept from the linear equation given in the form:

[tex]\[ y - 15x + 182 = 0 \][/tex]

To find the slope and the [tex]\( y \)[/tex]-intercept, we need to rewrite this equation into the slope-intercept form, which is:

[tex]\[ y = mx + b \][/tex]

where [tex]\( m \)[/tex] represents the slope and [tex]\( b \)[/tex] represents the [tex]\( y \)[/tex]-intercept.

Step 1: Start with the original equation:

[tex]\[ y - 15x + 182 = 0 \][/tex]

Step 2: Solve for [tex]\( y \)[/tex] to get it by itself on one side of the equation:

Add [tex]\( 15x \)[/tex] to both sides:

[tex]\[ y = 15x - 182 \][/tex]

Now, the equation is in the slope-intercept form [tex]\( y = mx + b \)[/tex].

Step 3: Identify the slope and the [tex]\( y \)[/tex]-intercept from the equation [tex]\( y = 15x - 182 \)[/tex]:

- The slope ([tex]\( m \)[/tex]) is the coefficient of [tex]\( x \)[/tex]. So, the slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]) is the constant term. So, the [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].

Therefore, for the equation [tex]\( y = 15x - 182 \)[/tex]:

- The slope is [tex]\( 15 \)[/tex].
- The [tex]\( y \)[/tex]-intercept is [tex]\(-182\)[/tex].