Answer :
To determine how much work is done when a 5 kg block is raised 4 meters, we can use the formula for calculating work done against gravity:
[tex]\[ \text{Work done} = \text{mass} \times \text{gravity} \times \text{height} \][/tex]
Let's break it down step by step:
1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) = 5 kg
- Height ([tex]\( h \)[/tex]) = 4 meters
- Gravitational acceleration ([tex]\( g \)[/tex]) = 9.8 m/s² (This is a standard value for gravity on Earth).
2. Plug the values into the formula:
[tex]\[ \text{Work done} = 5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 4 \, \text{m} \][/tex]
3. Perform the calculation:
[tex]\[ \text{Work done} = 5 \times 9.8 \times 4 \][/tex]
4. Calculate the result:
[tex]\[ \text{Work done} = 196 \, \text{Joules} \][/tex]
Therefore, the work done in raising the 5 kg block by 4 meters is 196 Joules. So, the correct answer is 196 J.
[tex]\[ \text{Work done} = \text{mass} \times \text{gravity} \times \text{height} \][/tex]
Let's break it down step by step:
1. Identify the given values:
- Mass ([tex]\( m \)[/tex]) = 5 kg
- Height ([tex]\( h \)[/tex]) = 4 meters
- Gravitational acceleration ([tex]\( g \)[/tex]) = 9.8 m/s² (This is a standard value for gravity on Earth).
2. Plug the values into the formula:
[tex]\[ \text{Work done} = 5 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 4 \, \text{m} \][/tex]
3. Perform the calculation:
[tex]\[ \text{Work done} = 5 \times 9.8 \times 4 \][/tex]
4. Calculate the result:
[tex]\[ \text{Work done} = 196 \, \text{Joules} \][/tex]
Therefore, the work done in raising the 5 kg block by 4 meters is 196 Joules. So, the correct answer is 196 J.