College

Given the functions:

\[ f(x) = -5x \]

\[ g(x) = 8x^2 - 5x - 9 \]

Find \((f \cdot g)(x)\).

A. \(-40x^4 + 25x^3 + 45x^2\)

B. \(-40x^2 + 25x + 45x\)

C. \(-40x^3 + 25x^2 + 45x\)

D. \(-40x^3 - 5x - 9\)

Answer :

To find (f • g)(x), substitute g(x) into f(x) and simplify. The resulting expression is [tex]-40x^2 + 25x + 45[/tex]. The correct choice is option B.

To find (f • g)(x), we need to compute f(g(x)).

This means we will substitute g(x) into f(x).

Start with g(x): g(x) = [tex]8x^2 - 5x - 9[/tex]

Substitute g(x) into f(x): f(g(x)) = [tex]-5 * (8x^2 - 5x - 9)[/tex]

Distribute -5 through the expression: f(g(x)) = [tex]-5 * 8x^2 + (-5) * (-5x) + (-5) * (-9)[/tex]

Perform the multiplication: f(g(x)) = [tex]-40x^2 + 25x + 45[/tex]

So, (f • g)(x) = [tex]-40x^2 + 25x + 45[/tex].

The correct answer is option B: [tex]-40x^2 + 25x + 45[/tex].