Answer :
We are given the function
[tex]$$
f(x) = -5x^2 - x + 20
$$[/tex]
and we need to calculate the value of [tex]$f(3)$[/tex].
Step 1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
Step 2. Calculate [tex]$(3)^2$[/tex]:
[tex]$$
(3)^2 = 9.
$$[/tex]
Step 3. Multiply [tex]$9$[/tex] by [tex]$-5$[/tex]:
[tex]$$
-5 \cdot 9 = -45.
$$[/tex]
Step 4. Replace back into the function:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
Step 5. Perform the additions:
Start by adding [tex]$-45$[/tex] and [tex]$-3$[/tex]:
[tex]$$
-45 - 3 = -48.
$$[/tex]
Then add [tex]$20$[/tex] to [tex]$-48$[/tex]:
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the value of the function at [tex]$x=3$[/tex] is
[tex]$$
f(3) = -28.
$$[/tex]
[tex]$$
f(x) = -5x^2 - x + 20
$$[/tex]
and we need to calculate the value of [tex]$f(3)$[/tex].
Step 1. Substitute [tex]$x = 3$[/tex]:
[tex]$$
f(3) = -5(3)^2 - 3 + 20.
$$[/tex]
Step 2. Calculate [tex]$(3)^2$[/tex]:
[tex]$$
(3)^2 = 9.
$$[/tex]
Step 3. Multiply [tex]$9$[/tex] by [tex]$-5$[/tex]:
[tex]$$
-5 \cdot 9 = -45.
$$[/tex]
Step 4. Replace back into the function:
[tex]$$
f(3) = -45 - 3 + 20.
$$[/tex]
Step 5. Perform the additions:
Start by adding [tex]$-45$[/tex] and [tex]$-3$[/tex]:
[tex]$$
-45 - 3 = -48.
$$[/tex]
Then add [tex]$20$[/tex] to [tex]$-48$[/tex]:
[tex]$$
-48 + 20 = -28.
$$[/tex]
Thus, the value of the function at [tex]$x=3$[/tex] is
[tex]$$
f(3) = -28.
$$[/tex]