Answer :
To find [tex]\( f(3) \)[/tex] for the function [tex]\( f(x) = -5x^2 - x + 20 \)[/tex], follow these steps:
1. Substitute [tex]\( x = 3 \)[/tex] into the function: Replace every [tex]\( x \)[/tex] in the function with 3.
[tex]\[ f(3) = -5(3)^2 - 3 + 20 \][/tex]
2. Calculate the square of 3:
[tex]\[ (3)^2 = 9 \][/tex]
So the function becomes:
[tex]\[ f(3) = -5(9) - 3 + 20 \][/tex]
3. Multiply -5 by 9:
[tex]\[ -5 \times 9 = -45 \][/tex]
Now, the function becomes:
[tex]\[ f(3) = -45 - 3 + 20 \][/tex]
4. Perform the subtraction of 3 from -45:
[tex]\[ -45 - 3 = -48 \][/tex]
5. Add 20 to -48:
[tex]\[ -48 + 20 = -28 \][/tex]
So, [tex]\( f(3) = -28 \)[/tex].
The correct answer is [tex]\(-28\)[/tex].
1. Substitute [tex]\( x = 3 \)[/tex] into the function: Replace every [tex]\( x \)[/tex] in the function with 3.
[tex]\[ f(3) = -5(3)^2 - 3 + 20 \][/tex]
2. Calculate the square of 3:
[tex]\[ (3)^2 = 9 \][/tex]
So the function becomes:
[tex]\[ f(3) = -5(9) - 3 + 20 \][/tex]
3. Multiply -5 by 9:
[tex]\[ -5 \times 9 = -45 \][/tex]
Now, the function becomes:
[tex]\[ f(3) = -45 - 3 + 20 \][/tex]
4. Perform the subtraction of 3 from -45:
[tex]\[ -45 - 3 = -48 \][/tex]
5. Add 20 to -48:
[tex]\[ -48 + 20 = -28 \][/tex]
So, [tex]\( f(3) = -28 \)[/tex].
The correct answer is [tex]\(-28\)[/tex].