Answer :
To find the indicated value [tex]\( f(-4) \)[/tex] for the function [tex]\( f(x) = x^2 - 5x - 6 \)[/tex], follow these steps:
1. Substitute the value: Replace every occurrence of [tex]\( x \)[/tex] in the function with [tex]\(-4\)[/tex].
[tex]\[
f(-4) = (-4)^2 - 5(-4) - 6
\][/tex]
2. Calculate the square: Compute [tex]\((-4)^2\)[/tex].
[tex]\[
(-4)^2 = 16
\][/tex]
3. Multiply the linear term: Calculate [tex]\(-5\)[/tex] times [tex]\(-4\)[/tex].
[tex]\[
-5(-4) = 20
\][/tex]
4. Add the terms together: Combine the results from the steps above.
[tex]\[
f(-4) = 16 + 20 - 6
\][/tex]
5. Perform the final addition and subtraction:
[tex]\[
16 + 20 = 36
\][/tex]
[tex]\[
36 - 6 = 30
\][/tex]
So, the value of [tex]\( f(-4) \)[/tex] is [tex]\( 30 \)[/tex].
1. Substitute the value: Replace every occurrence of [tex]\( x \)[/tex] in the function with [tex]\(-4\)[/tex].
[tex]\[
f(-4) = (-4)^2 - 5(-4) - 6
\][/tex]
2. Calculate the square: Compute [tex]\((-4)^2\)[/tex].
[tex]\[
(-4)^2 = 16
\][/tex]
3. Multiply the linear term: Calculate [tex]\(-5\)[/tex] times [tex]\(-4\)[/tex].
[tex]\[
-5(-4) = 20
\][/tex]
4. Add the terms together: Combine the results from the steps above.
[tex]\[
f(-4) = 16 + 20 - 6
\][/tex]
5. Perform the final addition and subtraction:
[tex]\[
16 + 20 = 36
\][/tex]
[tex]\[
36 - 6 = 30
\][/tex]
So, the value of [tex]\( f(-4) \)[/tex] is [tex]\( 30 \)[/tex].