Answer :
To solve the problem, we are given the formula [tex]\( f = c \cdot d^3 \)[/tex]. We know the following values: [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex]. Our goal is to find the value of [tex]\( c \)[/tex].
Here's a step-by-step solution:
1. Identify the formula: We start with the formula [tex]\( f = c \cdot d^3 \)[/tex].
2. Substitute the known values: We substitute the values we know into the equation. This gives us:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]: We calculate [tex]\( 10^3 \)[/tex] which equals 1000.
4. Set up the equation: After substituting [tex]\( 10^3 = 1000 \)[/tex], our equation is:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]: To find [tex]\( c \)[/tex], we divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the fraction: We simplify [tex]\(\frac{450}{1000}\)[/tex] to 0.45.
Therefore, the value of [tex]\( c \)[/tex] is 0.45.
The correct choice from the options is:
A) 0.45
Here's a step-by-step solution:
1. Identify the formula: We start with the formula [tex]\( f = c \cdot d^3 \)[/tex].
2. Substitute the known values: We substitute the values we know into the equation. This gives us:
[tex]\[
450 = c \cdot 10^3
\][/tex]
3. Calculate [tex]\( d^3 \)[/tex]: We calculate [tex]\( 10^3 \)[/tex] which equals 1000.
4. Set up the equation: After substituting [tex]\( 10^3 = 1000 \)[/tex], our equation is:
[tex]\[
450 = c \cdot 1000
\][/tex]
5. Solve for [tex]\( c \)[/tex]: To find [tex]\( c \)[/tex], we divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
6. Simplify the fraction: We simplify [tex]\(\frac{450}{1000}\)[/tex] to 0.45.
Therefore, the value of [tex]\( c \)[/tex] is 0.45.
The correct choice from the options is:
A) 0.45