Answer :
To find the value of
[tex]$$
f(x)=5x^4 - 3x^2 + 6x + 2
$$[/tex]
at [tex]$x = -2$[/tex], we substitute [tex]$-2$[/tex] for [tex]$x$[/tex]:
1. Compute the first term:
[tex]$$
5(-2)^4.
$$[/tex]
Since
[tex]$$
(-2)^4 = 16,
$$[/tex]
we have:
[tex]$$
5 \times 16 = 80.
$$[/tex]
2. Compute the second term:
[tex]$$
-3(-2)^2.
$$[/tex]
Since
[tex]$$
(-2)^2 = 4,
$$[/tex]
we have:
[tex]$$
-3 \times 4 = -12.
$$[/tex]
3. Compute the third term:
[tex]$$
6(-2) = -12.
$$[/tex]
4. The fourth term is the constant:
[tex]$$
2.
$$[/tex]
Now, add all the terms together:
[tex]$$
f(-2) = 80 + (-12) + (-12) + 2.
$$[/tex]
Performing the addition step-by-step:
[tex]$$
80 - 12 = 68,
$$[/tex]
[tex]$$
68 - 12 = 56,
$$[/tex]
[tex]$$
56 + 2 = 58.
$$[/tex]
Thus, the value of [tex]$f(-2)$[/tex] is:
[tex]$$
f(-2)=58.
$$[/tex]
[tex]$$
f(x)=5x^4 - 3x^2 + 6x + 2
$$[/tex]
at [tex]$x = -2$[/tex], we substitute [tex]$-2$[/tex] for [tex]$x$[/tex]:
1. Compute the first term:
[tex]$$
5(-2)^4.
$$[/tex]
Since
[tex]$$
(-2)^4 = 16,
$$[/tex]
we have:
[tex]$$
5 \times 16 = 80.
$$[/tex]
2. Compute the second term:
[tex]$$
-3(-2)^2.
$$[/tex]
Since
[tex]$$
(-2)^2 = 4,
$$[/tex]
we have:
[tex]$$
-3 \times 4 = -12.
$$[/tex]
3. Compute the third term:
[tex]$$
6(-2) = -12.
$$[/tex]
4. The fourth term is the constant:
[tex]$$
2.
$$[/tex]
Now, add all the terms together:
[tex]$$
f(-2) = 80 + (-12) + (-12) + 2.
$$[/tex]
Performing the addition step-by-step:
[tex]$$
80 - 12 = 68,
$$[/tex]
[tex]$$
68 - 12 = 56,
$$[/tex]
[tex]$$
56 + 2 = 58.
$$[/tex]
Thus, the value of [tex]$f(-2)$[/tex] is:
[tex]$$
f(-2)=58.
$$[/tex]