High School

Given: [tex]f(x) = 5x^4 - 3x^2 + 6x + 2[/tex]. Find [tex]f(-2)[/tex].

A. -28
B. 10
C. 14
D. 58
E. 82

Answer :

To find the value of

[tex]$$
f(x)=5x^4-3x^2+6x+2
$$[/tex]

at [tex]$x = -2$[/tex], follow these steps:

1. Substitute [tex]$x = -2$[/tex] into the function:
[tex]$$
f(-2)=5(-2)^4 - 3(-2)^2 + 6(-2) + 2.
$$[/tex]

2. Evaluate each term one by one:
- For the first term, compute [tex]$(-2)^4$[/tex]. Since
[tex]$$
(-2)^4 = 16,
$$[/tex]
we have
[tex]$$
5(-2)^4=5 \times 16=80.
$$[/tex]

- For the second term, compute [tex]$(-2)^2$[/tex]. Since
[tex]$$
(-2)^2 = 4,
$$[/tex]
we have
[tex]$$
-3(-2)^2=-3 \times 4=-12.
$$[/tex]

- For the third term:
[tex]$$
6(-2)=-12.
$$[/tex]

- The constant remains:
[tex]$$
+2.
$$[/tex]

3. Now, combine all the evaluated terms:
[tex]$$
f(-2)=80 - 12 - 12 + 2.
$$[/tex]

4. Perform the final calculation:
[tex]\[
80 - 12 = 68, \quad 68 - 12 = 56, \quad 56 + 2 = 58.
\][/tex]

Thus, the value of [tex]$f(-2)$[/tex] is

[tex]$$
\boxed{58}.
$$[/tex]