High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Given [tex]f(x) = 2x^2 - 4[/tex], which of the following represents a point on the graph of the function?

A. [tex]f(3) = 14[/tex]

B. [tex]f(-5) = 46[/tex]

C. [tex]f(4) = 28[/tex]

D. [tex]f(-2) = -8[/tex]

Answer :

To determine which of the given points lies on the graph of the function [tex]\( f(x) = 2x^2 - 4 \)[/tex], we need to plug each [tex]\( x \)[/tex]-value from the options into the function and see if the resulting [tex]\( f(x) \)[/tex]-value matches the provided [tex]\( y \)[/tex]-value.

Let's evaluate [tex]\( f(x) \)[/tex] for each option:

Option A: [tex]\( f(3) \)[/tex]
[tex]\[ f(3) = 2(3)^2 - 4 = 2 \cdot 9 - 4 = 18 - 4 = 14 \][/tex]
The result is [tex]\( f(3) = 14 \)[/tex], not [tex]\( 16 \)[/tex]. This option is incorrect.

Option B: [tex]\( f(-5) \)[/tex]
[tex]\[ f(-5) = 2(-5)^2 - 4 = 2 \cdot 25 - 4 = 50 - 4 = 46 \][/tex]
The result matches provided [tex]\( f(-5) = 46 \)[/tex]. This option is correct.

Option C: [tex]\( f(4) \)[/tex]
[tex]\[ f(4) = 2(4)^2 - 4 = 2 \cdot 16 - 4 = 32 - 4 = 28 \][/tex]
The result matches provided [tex]\( f(4) = 28 \)[/tex]. This option is correct.

Option D: [tex]\( f(-2) \)[/tex]
[tex]\[ f(-2) = 2(-2)^2 - 4 = 2 \cdot 4 - 4 = 8 - 4 = 4 \][/tex]
The result is [tex]\( f(-2) = 4 \)[/tex], not [tex]\( -8 \)[/tex]. This option is incorrect.

After evaluating each option, we can conclude that the points that lie on the graph of the function [tex]\( f(x) = 2x^2 - 4 \)[/tex] are:

- Option B: [tex]\( f(-5) = 46 \)[/tex]
- Option C: [tex]\( f(4) = 28 \)[/tex]

Thus, the correct points on the graph of the function are those found in Option B and Option C.