Answer :
To solve the question, we need to find the value of [tex]\( c \)[/tex] using the equation given:
[tex]\[ f = c \cdot d^3 \][/tex]
Here's how to do it step-by-step:
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Write down the formula:
- The equation is [tex]\( f = c \cdot d^3 \)[/tex].
3. Substitute the known values into the equation:
- Plug in [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
4. Calculate [tex]\( 10^3 \)[/tex]:
- [tex]\( 10^3 = 10 \times 10 \times 10 = 1000 \)[/tex]
5. Substitute back into the equation:
- Now the equation is:
[tex]\[
450 = c \times 1000
\][/tex]
6. Solve for [tex]\( c \)[/tex]:
- To isolate [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
7. Perform the division:
- When you divide 450 by 1000, you get:
[tex]\[
c = 0.45
\][/tex]
Thus, the value of [tex]\( c \)[/tex] is 0.45.
[tex]\[ f = c \cdot d^3 \][/tex]
Here's how to do it step-by-step:
1. Identify the given values:
- [tex]\( f = 450 \)[/tex]
- [tex]\( d = 10 \)[/tex]
2. Write down the formula:
- The equation is [tex]\( f = c \cdot d^3 \)[/tex].
3. Substitute the known values into the equation:
- Plug in [tex]\( f = 450 \)[/tex] and [tex]\( d = 10 \)[/tex] into the equation:
[tex]\[
450 = c \cdot 10^3
\][/tex]
4. Calculate [tex]\( 10^3 \)[/tex]:
- [tex]\( 10^3 = 10 \times 10 \times 10 = 1000 \)[/tex]
5. Substitute back into the equation:
- Now the equation is:
[tex]\[
450 = c \times 1000
\][/tex]
6. Solve for [tex]\( c \)[/tex]:
- To isolate [tex]\( c \)[/tex], divide both sides of the equation by 1000:
[tex]\[
c = \frac{450}{1000}
\][/tex]
7. Perform the division:
- When you divide 450 by 1000, you get:
[tex]\[
c = 0.45
\][/tex]
Thus, the value of [tex]\( c \)[/tex] is 0.45.