College

ACTIVIDAD 1

Berta quiere hacer un mosaico rectangular usando cuadrados de distintos colores, cuyos lados miden 1 centímetro. La región rectangular que quiere cubrir con los cuadrados tiene 8 centímetros de largo y 5 centímetros de ancho. Ella dibujó en una cuadrícula el mosaico.

1. ¿Cuántos cuadrados de [tex]$1 \, cm^2$[/tex] cubren el rectángulo?

2. ¿Cuál es el área del rectángulo?

3. Calcula el producto entre la medida del largo y el ancho del rectángulo. ¿Qué relación hay entre este número y el área del rectángulo? Explica tu respuesta.

Escribe abajo tu explicación.

Answer :

To solve the problem of determining how many 1 cm² squares Berta needs to cover the rectangular area, let's go through each step in detail:

1. Identify the dimensions of the rectangle:
- The rectangle has a length of 8 centimeters and a width of 5 centimeters.

2. Calculate the area of the rectangle:
- The area of a rectangle is calculated by multiplying its length by its width.
- So, we calculate:
Area = Length × Width
Area = 8 cm × 5 cm = 40 cm²

3. Determine how many 1 cm² squares are needed:
- Each square has an area of 1 cm².
- The total area of the rectangle is 40 cm².
- Therefore, you will need 40 squares of 1 cm² to completely cover the rectangle.

4. Explain the relationship between the area and the product of the dimensions:
- The area of the rectangle is equal to the product of its length and width. This means that multiplying the length by the width gives you the total number of 1 cm² squares needed to cover the entire rectangular area.

So, to summarize:
- The number of 1 cm² squares needed is 40.
- The area of the rectangle is 40 cm².
- The relationship is that the area (40 cm²) is exactly the product of the rectangle's length (8 cm) and width (5 cm).