Answer :
We are given the recurrence relation
[tex]$$
f(n)=2 f(n-1)+(n-2)
$$[/tex]
with the initial condition
[tex]$$
f(1)=13.
$$[/tex]
We want to find [tex]\( f(4) \)[/tex].
Step 1. Compute [tex]\( f(2) \)[/tex]:
Substitute [tex]\( n = 2 \)[/tex] into the recurrence:
[tex]$$
f(2)=2f(1)+(2-2)=2\cdot 13+0=26.
$$[/tex]
Step 2. Compute [tex]\( f(3) \)[/tex]:
Substitute [tex]\( n = 3 \)[/tex]:
[tex]$$
f(3)=2f(2)+(3-2)=2\cdot 26+1=52+1=53.
$$[/tex]
Step 3. Compute [tex]\( f(4) \)[/tex]:
Substitute [tex]\( n = 4 \)[/tex]:
[tex]$$
f(4)=2f(3)+(4-2)=2\cdot 53+2=106+2=108.
$$[/tex]
Thus, the value of [tex]\( f(4) \)[/tex] is
[tex]$$
\boxed{108}.
$$[/tex]
[tex]$$
f(n)=2 f(n-1)+(n-2)
$$[/tex]
with the initial condition
[tex]$$
f(1)=13.
$$[/tex]
We want to find [tex]\( f(4) \)[/tex].
Step 1. Compute [tex]\( f(2) \)[/tex]:
Substitute [tex]\( n = 2 \)[/tex] into the recurrence:
[tex]$$
f(2)=2f(1)+(2-2)=2\cdot 13+0=26.
$$[/tex]
Step 2. Compute [tex]\( f(3) \)[/tex]:
Substitute [tex]\( n = 3 \)[/tex]:
[tex]$$
f(3)=2f(2)+(3-2)=2\cdot 26+1=52+1=53.
$$[/tex]
Step 3. Compute [tex]\( f(4) \)[/tex]:
Substitute [tex]\( n = 4 \)[/tex]:
[tex]$$
f(4)=2f(3)+(4-2)=2\cdot 53+2=106+2=108.
$$[/tex]
Thus, the value of [tex]\( f(4) \)[/tex] is
[tex]$$
\boxed{108}.
$$[/tex]