College

Find the volume of a rectangular prism if the length is [tex]4x[/tex], the width is [tex]2x[/tex], and the height is [tex]x^3 + 3x + 6[/tex].

Use the formula [tex]V = l \cdot w \cdot h[/tex], where [tex]l[/tex] is length, [tex]w[/tex] is width, and [tex]h[/tex] is height, to find the volume.

A. [tex]6x^5 + 18x^3 + 36x^2[/tex]

B. [tex]6x^4 + 18x^3 + 36x^2[/tex]

C. [tex]8x^5 + 24x^3 + 48x^2[/tex]

D. [tex]8x^8 + 24x^3 + 48x^2[/tex]

Answer :

We are given a rectangular prism with the following dimensions:

- Length: [tex]\( 4x \)[/tex]
- Width: [tex]\( 2x \)[/tex]
- Height: [tex]\( x^3 + 3x + 6 \)[/tex]

To find the volume of a rectangular prism, we use the formula

[tex]$$
V = \text{length} \times \text{width} \times \text{height}.
$$[/tex]

Step 1: Multiply the Length and Width

First, multiply the length and width:

[tex]$$
4x \times 2x = 8x^2.
$$[/tex]

Step 2: Multiply by the Height

Now, multiply the result from Step 1 by the height:

[tex]$$
8x^2 \times (x^3 + 3x + 6).
$$[/tex]

Step 3: Distribute the Multiplication

Distribute [tex]\( 8x^2 \)[/tex] to each term inside the parentheses:

[tex]\[
\begin{aligned}
8x^2 \times x^3 &= 8x^{2+3} = 8x^5, \\
8x^2 \times 3x &= 24x^{2+1} = 24x^3, \\
8x^2 \times 6 &= 48x^2.
\end{aligned}
\][/tex]

Step 4: Write the Final Expression for the Volume

Combine all the terms:

[tex]$$
V = 8x^5 + 24x^3 + 48x^2.
$$[/tex]

Thus, the volume of the rectangular prism is

[tex]$$
\boxed{8x^5+24x^3+48x^2}.
$$[/tex]