College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the volume of a rectangular prism if the length is [tex]4x[/tex], the width is [tex]2x[/tex], and the height is [tex]x^3 + 3x + 6[/tex]. Use the formula [tex]V = l \cdot w \cdot h[/tex], where [tex]l[/tex] is length, [tex]w[/tex] is width, and [tex]h[/tex] is height, to find the volume.

A. [tex]6x^5 + 18x^3 + 36x^2[/tex]
B. [tex]6x^4 + 18x^2 + 36x^2[/tex]
C. [tex]8x^5 + 24x^3 + 48x^2[/tex]
D. [tex]8x^6 + 24x^3 + 48x^2[/tex]

Answer :

To find the volume of the rectangular prism, we will use the formula for volume, [tex]\( V \)[/tex], given by:

[tex]\[ V = l \cdot w \cdot h \][/tex]

where [tex]\( l \)[/tex] is the length, [tex]\( w \)[/tex] is the width, and [tex]\( h \)[/tex] is the height of the prism.

Given:
- [tex]\( l = 4x \)[/tex]
- [tex]\( w = 2x \)[/tex]
- [tex]\( h = x^3 + 3x + 6 \)[/tex]

Let's perform the multiplication step-by-step:

1. Multiply the length and the width:
[tex]\[
l \cdot w = (4x) \cdot (2x) = 8x^2
\][/tex]

2. Multiply the result with the height:
[tex]\[
V = (8x^2) \cdot (x^3 + 3x + 6)
\][/tex]

3. Distribute [tex]\( 8x^2 \)[/tex] to each term in the height [tex]\( x^3 + 3x + 6 \)[/tex]:
[tex]\[
V = 8x^2 \cdot x^3 + 8x^2 \cdot 3x + 8x^2 \cdot 6
\][/tex]

4. Perform each multiplication:
[tex]\[
8x^2 \cdot x^3 = 8x^{2+3} = 8x^5
\][/tex]
[tex]\[
8x^2 \cdot 3x = 24x^{2+1} = 24x^3
\][/tex]
[tex]\[
8x^2 \cdot 6 = 48x^2
\][/tex]

5. Combine all the terms to get the final volume:
[tex]\[
V = 8x^5 + 24x^3 + 48x^2
\][/tex]

So, the volume of the rectangular prism is [tex]\( 8x^5 + 24x^3 + 48x^2 \)[/tex].

Among the options given, the correct one is:

[tex]\[ 8x^5 + 24x^3 + 48x^2 \][/tex]