Answer :
To find the sum of the expression [tex]\(19x^3 + (14x + 4x^3)\)[/tex], you need to combine like terms.
1. Identify and group like terms:
- First, look for terms involving [tex]\(x^3\)[/tex]. We have [tex]\(19x^3\)[/tex] and [tex]\(4x^3\)[/tex].
- For terms involving [tex]\(x\)[/tex], we have [tex]\(14x\)[/tex].
2. Add the like terms:
- Combine the [tex]\(x^3\)[/tex] terms: [tex]\(19x^3 + 4x^3\)[/tex]. Add their coefficients: [tex]\(19 + 4 = 23\)[/tex]. So, the combined x³ term is [tex]\(23x^3\)[/tex].
- The term with [tex]\(x\)[/tex] remains the same as it stands alone: [tex]\(14x\)[/tex].
3. Write the simplified expression:
- After combining the terms, the resulting expression is [tex]\(23x^3 + 14x\)[/tex].
Therefore, the final simplified expression is [tex]\(23x^3 + 14x\)[/tex].
Looking at the options provided:
- A. [tex]\(37x^3\)[/tex]
- B. [tex]\(37x^7\)[/tex]
- C. [tex]\(22x^3 + 14x\)[/tex]
- D. [tex]\(23x^3 + 14x\)[/tex]
The correct answer is D. [tex]\(23x^3 + 14x\)[/tex].
1. Identify and group like terms:
- First, look for terms involving [tex]\(x^3\)[/tex]. We have [tex]\(19x^3\)[/tex] and [tex]\(4x^3\)[/tex].
- For terms involving [tex]\(x\)[/tex], we have [tex]\(14x\)[/tex].
2. Add the like terms:
- Combine the [tex]\(x^3\)[/tex] terms: [tex]\(19x^3 + 4x^3\)[/tex]. Add their coefficients: [tex]\(19 + 4 = 23\)[/tex]. So, the combined x³ term is [tex]\(23x^3\)[/tex].
- The term with [tex]\(x\)[/tex] remains the same as it stands alone: [tex]\(14x\)[/tex].
3. Write the simplified expression:
- After combining the terms, the resulting expression is [tex]\(23x^3 + 14x\)[/tex].
Therefore, the final simplified expression is [tex]\(23x^3 + 14x\)[/tex].
Looking at the options provided:
- A. [tex]\(37x^3\)[/tex]
- B. [tex]\(37x^7\)[/tex]
- C. [tex]\(22x^3 + 14x\)[/tex]
- D. [tex]\(23x^3 + 14x\)[/tex]
The correct answer is D. [tex]\(23x^3 + 14x\)[/tex].