Answer :
Sure, let's find the sum step by step.
We are given the expression:
[tex]\[ 17x^3 + (3x + 8x^3) \][/tex]
First, we need to clear the parentheses:
[tex]\[ 17x^3 + 3x + 8x^3 \][/tex]
Now, we combine like terms. The like terms here are [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex]:
[tex]\[ 17x^3 + 8x^3 = 25x^3 \][/tex]
Now we add the remaining term [tex]\(3x\)[/tex]:
[tex]\[ 25x^3 + 3x \][/tex]
So the sum is:
[tex]\[ 25x^3 + 3x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{25 x^3 + 3 x} \][/tex]
So the option C, [tex]\(25 x^3 + 3 x\)[/tex], is the correct choice.
We are given the expression:
[tex]\[ 17x^3 + (3x + 8x^3) \][/tex]
First, we need to clear the parentheses:
[tex]\[ 17x^3 + 3x + 8x^3 \][/tex]
Now, we combine like terms. The like terms here are [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex]:
[tex]\[ 17x^3 + 8x^3 = 25x^3 \][/tex]
Now we add the remaining term [tex]\(3x\)[/tex]:
[tex]\[ 25x^3 + 3x \][/tex]
So the sum is:
[tex]\[ 25x^3 + 3x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{25 x^3 + 3 x} \][/tex]
So the option C, [tex]\(25 x^3 + 3 x\)[/tex], is the correct choice.