College

Find the sum of the polynomials:

[tex]\left(5x^5 - 2x^3 + x\right) + \left(4x^5 - 3x^4 + 2x^3 - 5x\right)[/tex].

A. [tex]x^5 + 3x^4 - 4x^3 + 6x[/tex]
B. [tex]9x^5 + 3x^4 - 4x^3 + 6x[/tex]
C. [tex]9x^5 - 3x^4 - 4x[/tex]
D. [tex]9x^5 + 3x^4 - 4x[/tex]

Answer :

Let's find the sum of the given polynomials step-by-step.

We are adding two polynomials:

1. [tex]\( (5x^5 - 2x^3 + x) \)[/tex]
2. [tex]\( (4x^5 - 3x^4 + 2x^3 - 5x) \)[/tex]

To combine these polynomials, we'll add the coefficients of the like terms:

- For [tex]\(x^5\)[/tex]:

- Coefficients are [tex]\(5\)[/tex] and [tex]\(4\)[/tex].
- Sum: [tex]\(5 + 4 = 9x^5\)[/tex].

- For [tex]\(x^4\)[/tex]:

- The first polynomial has no [tex]\(x^4\)[/tex] term, so its coefficient is [tex]\(0\)[/tex].
- Coefficient of [tex]\(x^4\)[/tex] in the second polynomial is [tex]\(-3\)[/tex].
- Sum: [tex]\(0 - 3 = -3x^4\)[/tex].

- For [tex]\(x^3\)[/tex]:

- Coefficients are [tex]\(-2\)[/tex] and [tex]\(2\)[/tex].
- Sum: [tex]\(-2 + 2 = 0x^3\)[/tex]. This term cancels out since the sum is 0.

- For [tex]\(x^2\)[/tex]:

- Neither polynomial has an [tex]\(x^2\)[/tex] term, so the sum is [tex]\(0x^2\)[/tex]. No need to include this in the final result.

- For [tex]\(x\)[/tex]:

- Coefficients are [tex]\(1\)[/tex] and [tex]\(-5\)[/tex].
- Sum: [tex]\(1 - 5 = -4x\)[/tex].

- Constant Term:

- Neither polynomial has a constant term, so their sum is [tex]\(0\)[/tex].

Putting it all together, the sum of the polynomials is:

[tex]\[ 9x^5 - 3x^4 - 4x \][/tex]