Answer :
To find the sum of the expression [tex]\(17x^3 + (3x + 8x^3)\)[/tex], follow these steps:
1. Identify Like Terms:
- Notice that [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex] are both terms involving [tex]\(x^3\)[/tex].
- The term [tex]\(3x\)[/tex] is different as it involves [tex]\(x\)[/tex], not [tex]\(x^3\)[/tex].
2. Combine Like Terms:
- Add the coefficients of the like terms. For the [tex]\(x^3\)[/tex] terms, add [tex]\(17x^3 + 8x^3\)[/tex].
- [tex]\(17x^3 + 8x^3 = 25x^3\)[/tex].
3. Write the Final Expression:
- After combining the like terms, you're left with the expression [tex]\(25x^3 + 3x\)[/tex].
4. Match with Given Options:
- The expression [tex]\(25x^3 + 3x\)[/tex] corresponds to option C.
Therefore, the final answer is:
C. [tex]\(25x^3 + 3x\)[/tex]
1. Identify Like Terms:
- Notice that [tex]\(17x^3\)[/tex] and [tex]\(8x^3\)[/tex] are both terms involving [tex]\(x^3\)[/tex].
- The term [tex]\(3x\)[/tex] is different as it involves [tex]\(x\)[/tex], not [tex]\(x^3\)[/tex].
2. Combine Like Terms:
- Add the coefficients of the like terms. For the [tex]\(x^3\)[/tex] terms, add [tex]\(17x^3 + 8x^3\)[/tex].
- [tex]\(17x^3 + 8x^3 = 25x^3\)[/tex].
3. Write the Final Expression:
- After combining the like terms, you're left with the expression [tex]\(25x^3 + 3x\)[/tex].
4. Match with Given Options:
- The expression [tex]\(25x^3 + 3x\)[/tex] corresponds to option C.
Therefore, the final answer is:
C. [tex]\(25x^3 + 3x\)[/tex]