College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the slope of the line containing the two points [tex](9, -9)[/tex] and [tex](-6, 5)[/tex].

A. [tex]\frac{14}{15}[/tex]
B. [tex]-\frac{15}{14}[/tex]
C. [tex]-\frac{14}{15}[/tex]
D. [tex]\frac{15}{14}[/tex]

Answer :

To find the slope of the line containing the two points [tex]\((9, -9)\)[/tex] and [tex]\((-6, 5)\)[/tex], we can use the formula for the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], which is:

[tex]\[
\text{Slope} = \frac{y_2 - y_1}{x_2 - x_1}
\][/tex]

Now, let's plug in the coordinates from the two points into the formula:

- [tex]\(x_1 = 9\)[/tex], [tex]\(y_1 = -9\)[/tex]
- [tex]\(x_2 = -6\)[/tex], [tex]\(y_2 = 5\)[/tex]

Substitute these values into the slope formula:

[tex]\[
\text{Slope} = \frac{5 - (-9)}{-6 - 9}
\][/tex]

Simplify the expression:

1. Calculate the difference in the [tex]\(y\)[/tex]-coordinates: [tex]\(5 - (-9) = 5 + 9 = 14\)[/tex].
2. Calculate the difference in the [tex]\(x\)[/tex]-coordinates: [tex]\(-6 - 9 = -15\)[/tex].

Now, substitute these differences back into the formula:

[tex]\[
\text{Slope} = \frac{14}{-15} = -\frac{14}{15}
\][/tex]

So, the slope of the line containing the two points is [tex]\(-\frac{14}{15}\)[/tex]. Therefore, the correct answer is option C.