College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the restrictions on [tex]x[/tex].

[tex]
\begin{array}{l}
87 + 3x + 35 < 180 \\
8x + 120 < 180 \\
3x < \frac{60}{3} \\
x < 20
\end{array}
[/tex]

Answer :

Let's solve the inequalities step by step to determine the restrictions on [tex]\( x \)[/tex].

1. First Inequality:
[tex]\[
87 + 3x + 35 < 180
\][/tex]
- Combine the constants:
[tex]\[
87 + 35 = 122
\][/tex]
- Rewrite the inequality:
[tex]\[
122 + 3x < 180
\][/tex]
- Subtract 122 from both sides:
[tex]\[
3x < 180 - 122
\][/tex]
- Calculate:
[tex]\[
3x < 58
\][/tex]
- Divide by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[
x < \frac{58}{3}
\][/tex]
- Simplify:
[tex]\[
x < 19.33
\][/tex]

2. Second Inequality:
[tex]\[
8x + 120 < 180
\][/tex]
- Subtract 120 from both sides:
[tex]\[
8x < 180 - 120
\][/tex]
- Calculate:
[tex]\[
8x < 60
\][/tex]
- Divide by 8 to solve for [tex]\( x \)[/tex]:
[tex]\[
x < \frac{60}{8}
\][/tex]
- Simplify:
[tex]\[
x < 7.5
\][/tex]

3. Third Inequality:
[tex]\[
3x < 20
\][/tex]
- Divide by 3 to solve for [tex]\( x \)[/tex]:
[tex]\[
x < \frac{20}{3}
\][/tex]
- Simplify:
[tex]\[
x < 6.67
\][/tex]

Conclusion:

To determine the overall restriction on [tex]\( x \)[/tex], we need the value that satisfies all three inequalities. Therefore, [tex]\( x \)[/tex] must be less than the smallest value from the solutions:

- [tex]\( x < 19.33 \)[/tex]
- [tex]\( x < 7.5 \)[/tex]
- [tex]\( x < 6.67 \)[/tex]

The most restrictive condition is [tex]\( x < 6.67 \)[/tex]. Thus, the restriction on [tex]\( x \)[/tex] is:

[tex]\[
x < 6.67
\][/tex]