College

Find the product:

[tex]$(G+13)(G-13)$[/tex]

A. [tex]$2G^2-169$[/tex]

B. [tex][tex]$2G^2-26$[/tex][/tex]

C. [tex]$G^2-26G-169$[/tex]

D. [tex]$G^2-169$[/tex]

Answer :

To find the product of [tex]\((G+13)(G-13)\)[/tex], we can use the difference of squares formula. The difference of squares formula states that:

[tex]\[
(a + b)(a - b) = a^2 - b^2
\][/tex]

In this expression, [tex]\(a\)[/tex] is [tex]\(G\)[/tex] and [tex]\(b\)[/tex] is [tex]\(13\)[/tex]. Applying the formula:

1. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a = G\)[/tex]
- [tex]\(b = 13\)[/tex]

2. Apply the formula:
- [tex]\((G + 13)(G - 13) = G^2 - 13^2\)[/tex]

3. Calculate [tex]\(13^2\)[/tex]:
- [tex]\(13^2 = 169\)[/tex]

4. Substitute back into the expression:
- [tex]\(G^2 - 169\)[/tex]

Therefore, the product of [tex]\((G+13)(G-13)\)[/tex] is [tex]\(\boxed{G^2 - 169}\)[/tex].