Answer :
To find the product of [tex]\((G+13)(G-13)\)[/tex], we can use the difference of squares formula. The difference of squares formula states that:
[tex]\[
(a + b)(a - b) = a^2 - b^2
\][/tex]
In this expression, [tex]\(a\)[/tex] is [tex]\(G\)[/tex] and [tex]\(b\)[/tex] is [tex]\(13\)[/tex]. Applying the formula:
1. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a = G\)[/tex]
- [tex]\(b = 13\)[/tex]
2. Apply the formula:
- [tex]\((G + 13)(G - 13) = G^2 - 13^2\)[/tex]
3. Calculate [tex]\(13^2\)[/tex]:
- [tex]\(13^2 = 169\)[/tex]
4. Substitute back into the expression:
- [tex]\(G^2 - 169\)[/tex]
Therefore, the product of [tex]\((G+13)(G-13)\)[/tex] is [tex]\(\boxed{G^2 - 169}\)[/tex].
[tex]\[
(a + b)(a - b) = a^2 - b^2
\][/tex]
In this expression, [tex]\(a\)[/tex] is [tex]\(G\)[/tex] and [tex]\(b\)[/tex] is [tex]\(13\)[/tex]. Applying the formula:
1. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
- [tex]\(a = G\)[/tex]
- [tex]\(b = 13\)[/tex]
2. Apply the formula:
- [tex]\((G + 13)(G - 13) = G^2 - 13^2\)[/tex]
3. Calculate [tex]\(13^2\)[/tex]:
- [tex]\(13^2 = 169\)[/tex]
4. Substitute back into the expression:
- [tex]\(G^2 - 169\)[/tex]
Therefore, the product of [tex]\((G+13)(G-13)\)[/tex] is [tex]\(\boxed{G^2 - 169}\)[/tex].