College

Find the product of the polynomials [tex](9x^2 - 6x + 1)(3x - 1)[/tex].

A. [tex]27x^3 - 27x^2 + 9x - 1[/tex]
B. [tex]27x^3 - 9x^2 + 27x - 1[/tex]
C. [tex]27x^3 - 27x^4 + 9x - 1[/tex]
D. [tex]27x^3 + 27x^2 + 9x + 1[/tex]

Answer :

Sure, let's find the product of the polynomials [tex]\((9x^2 - 6x + 1)(3x - 1)\)[/tex] step-by-step.

We need to use the distributive property to multiply each term in the first polynomial by each term in the second polynomial.

The given polynomials are:
[tex]\[ (9x^2 - 6x + 1)(3x - 1) \][/tex]

Step-by-step multiplication:

1. Multiply [tex]\(9x^2\)[/tex] by each term in [tex]\(3x - 1\)[/tex]:

[tex]\[
9x^2 \cdot 3x = 27x^3
\][/tex]

[tex]\[
9x^2 \cdot -1 = -9x^2
\][/tex]

2. Multiply [tex]\(-6x\)[/tex] by each term in [tex]\(3x - 1\)[/tex]:

[tex]\[
-6x \cdot 3x = -18x^2
\][/tex]

[tex]\[
-6x \cdot -1 = 6x
\][/tex]

3. Multiply [tex]\(1\)[/tex] by each term in [tex]\(3x - 1\)[/tex]:

[tex]\[
1 \cdot 3x = 3x
\][/tex]

[tex]\[
1 \cdot -1 = -1
\][/tex]

4. Combine all the terms:

[tex]\[
27x^3 - 9x^2 - 18x^2 + 6x + 3x - 1
\][/tex]

5. Simplify by combining like terms:

[tex]\[
27x^3 - (9x^2 + 18x^2) + (6x + 3x) - 1
\][/tex]

[tex]\[
27x^3 - 27x^2 + 9x - 1
\][/tex]

So, the product of the polynomials [tex]\((9x^2 - 6x + 1)(3x - 1)\)[/tex] is:
[tex]\[\boxed{27x^3 - 27x^2 + 9x - 1}\][/tex]

Among the given options, this matches with:
[tex]\[ 27x^3 - 27x^2 + 9x - 1\][/tex]

Therefore, the correct answer is:
[tex]\[\boxed{27x^3 - 27x^2 + 9x - 1}\][/tex]