College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find the product of [tex](-4x - 1)\left(-7x^2 + 5x - 2\right)[/tex].

A. [tex]28x^3 - 13x^2 + 3x + 2[/tex]
B. [tex]28x^3 + 13x^2 + 3x + 2[/tex]
C. [tex]28x^3 - 13x^2 + 3x - 2[/tex]
D. [tex]28x^3 - 13x^2 - 3x + 2[/tex]

Answer :

To multiply
[tex]$$(-4x-1)\left(-7x^2+5x-2\right),$$[/tex]
we distribute each term from the first factor across every term in the second factor:

1. Multiply [tex]$-4x$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
(-4x)\cdot(-7x^2) &= 28x^3, \\
(-4x)\cdot(5x) &= -20x^2, \\
(-4x)\cdot(-2) &= 8x.
\end{aligned}
\][/tex]

2. Multiply [tex]$-1$[/tex] by each term in the second polynomial:
[tex]\[
\begin{aligned}
(-1)\cdot(-7x^2) &= 7x^2, \\
(-1)\cdot(5x) &= -5x, \\
(-1)\cdot(-2) &= 2.
\end{aligned}
\][/tex]

3. Now, combine like terms:
- The [tex]$x^3$[/tex] term is:
[tex]\[
28x^3.
\][/tex]
- The [tex]$x^2$[/tex] terms are:
[tex]\[
-20x^2 + 7x^2 = -13x^2.
\][/tex]
- The [tex]$x$[/tex] terms are:
[tex]\[
8x - 5x = 3x.
\][/tex]
- The constant term is:
[tex]\[
2.
\][/tex]

Thus, the final product is:
[tex]$$
28x^3 - 13x^2 + 3x + 2.
$$[/tex]

This matches the first option.