High School

Find the product of [tex]$2x^4(2x^2 + 3x + 4)$[/tex].

A. [tex]$2x^8 + 3x^4 + 4x^4$[/tex]
B. [tex][tex]$4x^6 + 6x^5 + 8x^4$[/tex][/tex]
C. [tex]$4x^4 + 3x^5 + 2x^6$[/tex]
D. [tex]$3x^6 + 4x^5 + 5x^4$[/tex]

Answer :

Let's find the product of the expression [tex]\(2x^4(2x^2 + 3x + 4)\)[/tex] by distributing [tex]\(2x^4\)[/tex] through the polynomial inside the parentheses. Here's a step-by-step breakdown:

1. Distribute [tex]\(2x^4\)[/tex] to [tex]\(2x^2\)[/tex]:

[tex]\[
2x^4 \cdot 2x^2 = 4x^{4+2} = 4x^6
\][/tex]

2. Distribute [tex]\(2x^4\)[/tex] to [tex]\(3x\)[/tex]:

[tex]\[
2x^4 \cdot 3x = 6x^{4+1} = 6x^5
\][/tex]

3. Distribute [tex]\(2x^4\)[/tex] to [tex]\(4\)[/tex]:

[tex]\[
2x^4 \cdot 4 = 8x^4
\][/tex]

Now, combine all these terms to get the final expanded expression:

[tex]\[
4x^6 + 6x^5 + 8x^4
\][/tex]

Therefore, the correct product is [tex]\(4x^6 + 6x^5 + 8x^4\)[/tex]. This matches the option [tex]\(4 x^6 + 6 x^5 + 8 x^4\)[/tex].