College

Find the difference:

[tex]\left(3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2\right) - \left(5x^6 - 2x^5 - 2x + 12\right)[/tex].

A. [tex]-2x^{12} + 5x^{10} - 10x^5 + 22x^2[/tex]

B. [tex]-2x^6 + 9x^5 - 11x^3 + 2x^2 - 12[/tex]

C. [tex]8x^6 + 5x^5 - 11x^4 + 2x^3 - 2x + 12[/tex]

D. [tex]-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12[/tex]

E. [tex]3x^6 + 2x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12[/tex]

Answer :

To find the difference between the two polynomials, we will subtract each corresponding term in the second polynomial from the first polynomial. Here’s how we will do this step by step:

### Step 1: Identify the coefficients of both polynomials

- For the first polynomial [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 \)[/tex], the coefficients are:
- [tex]\(3x^6\)[/tex], [tex]\(7x^5\)[/tex], [tex]\(-9x^4\)[/tex], [tex]\(8x^3\)[/tex], [tex]\(-10x^2\)[/tex]

- For the second polynomial [tex]\( 5x^6 - 2x^5 - 2x + 12 \)[/tex], the coefficients are:
- [tex]\(5x^6\)[/tex], [tex]\(-2x^5\)[/tex], [tex]\(0x^4\)[/tex], [tex]\(0x^3\)[/tex], [tex]\(0x^2\)[/tex], [tex]\(-2x\)[/tex], [tex]\(12\)[/tex]

### Step 2: Rewrite the polynomials to match their terms

We will ensure both polynomials have the same degree by inserting zero coefficients where necessary.

- First polynomial: [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 + 0x + 0 \)[/tex]
- Second polynomial: [tex]\( 5x^6 - 2x^5 + 0x^4 + 0x^3 + 0x^2 - 2x + 12 \)[/tex]

### Step 3: Subtract corresponding coefficients

Now, subtract each coefficient in the second polynomial from the first:

- [tex]\( (3x^6 - 5x^6) = -2x^6 \)[/tex]
- [tex]\( (7x^5 - (-2x^5)) = 9x^5 \)[/tex]
- [tex]\( (-9x^4 - 0x^4) = -9x^4 \)[/tex]
- [tex]\( (8x^3 - 0x^3) = 8x^3 \)[/tex]
- [tex]\( (-10x^2 - 0x^2) = -10x^2 \)[/tex]
- [tex]\( (0x - (-2x)) = 2x \)[/tex]
- [tex]\( (0 - 12) = -12 \)[/tex]

### Step 4: Write the resulting polynomial

Combine the results to get the final polynomial:

[tex]\[
-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12
\][/tex]

Therefore, the correct choice from the given options is:

d. [tex]\(-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12\)[/tex]