Answer :
To find the difference between the two polynomials, we will subtract each corresponding term in the second polynomial from the first polynomial. Here’s how we will do this step by step:
### Step 1: Identify the coefficients of both polynomials
- For the first polynomial [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 \)[/tex], the coefficients are:
- [tex]\(3x^6\)[/tex], [tex]\(7x^5\)[/tex], [tex]\(-9x^4\)[/tex], [tex]\(8x^3\)[/tex], [tex]\(-10x^2\)[/tex]
- For the second polynomial [tex]\( 5x^6 - 2x^5 - 2x + 12 \)[/tex], the coefficients are:
- [tex]\(5x^6\)[/tex], [tex]\(-2x^5\)[/tex], [tex]\(0x^4\)[/tex], [tex]\(0x^3\)[/tex], [tex]\(0x^2\)[/tex], [tex]\(-2x\)[/tex], [tex]\(12\)[/tex]
### Step 2: Rewrite the polynomials to match their terms
We will ensure both polynomials have the same degree by inserting zero coefficients where necessary.
- First polynomial: [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 + 0x + 0 \)[/tex]
- Second polynomial: [tex]\( 5x^6 - 2x^5 + 0x^4 + 0x^3 + 0x^2 - 2x + 12 \)[/tex]
### Step 3: Subtract corresponding coefficients
Now, subtract each coefficient in the second polynomial from the first:
- [tex]\( (3x^6 - 5x^6) = -2x^6 \)[/tex]
- [tex]\( (7x^5 - (-2x^5)) = 9x^5 \)[/tex]
- [tex]\( (-9x^4 - 0x^4) = -9x^4 \)[/tex]
- [tex]\( (8x^3 - 0x^3) = 8x^3 \)[/tex]
- [tex]\( (-10x^2 - 0x^2) = -10x^2 \)[/tex]
- [tex]\( (0x - (-2x)) = 2x \)[/tex]
- [tex]\( (0 - 12) = -12 \)[/tex]
### Step 4: Write the resulting polynomial
Combine the results to get the final polynomial:
[tex]\[
-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12
\][/tex]
Therefore, the correct choice from the given options is:
d. [tex]\(-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12\)[/tex]
### Step 1: Identify the coefficients of both polynomials
- For the first polynomial [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 \)[/tex], the coefficients are:
- [tex]\(3x^6\)[/tex], [tex]\(7x^5\)[/tex], [tex]\(-9x^4\)[/tex], [tex]\(8x^3\)[/tex], [tex]\(-10x^2\)[/tex]
- For the second polynomial [tex]\( 5x^6 - 2x^5 - 2x + 12 \)[/tex], the coefficients are:
- [tex]\(5x^6\)[/tex], [tex]\(-2x^5\)[/tex], [tex]\(0x^4\)[/tex], [tex]\(0x^3\)[/tex], [tex]\(0x^2\)[/tex], [tex]\(-2x\)[/tex], [tex]\(12\)[/tex]
### Step 2: Rewrite the polynomials to match their terms
We will ensure both polynomials have the same degree by inserting zero coefficients where necessary.
- First polynomial: [tex]\( 3x^6 + 7x^5 - 9x^4 + 8x^3 - 10x^2 + 0x + 0 \)[/tex]
- Second polynomial: [tex]\( 5x^6 - 2x^5 + 0x^4 + 0x^3 + 0x^2 - 2x + 12 \)[/tex]
### Step 3: Subtract corresponding coefficients
Now, subtract each coefficient in the second polynomial from the first:
- [tex]\( (3x^6 - 5x^6) = -2x^6 \)[/tex]
- [tex]\( (7x^5 - (-2x^5)) = 9x^5 \)[/tex]
- [tex]\( (-9x^4 - 0x^4) = -9x^4 \)[/tex]
- [tex]\( (8x^3 - 0x^3) = 8x^3 \)[/tex]
- [tex]\( (-10x^2 - 0x^2) = -10x^2 \)[/tex]
- [tex]\( (0x - (-2x)) = 2x \)[/tex]
- [tex]\( (0 - 12) = -12 \)[/tex]
### Step 4: Write the resulting polynomial
Combine the results to get the final polynomial:
[tex]\[
-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12
\][/tex]
Therefore, the correct choice from the given options is:
d. [tex]\(-2x^6 + 9x^5 - 9x^4 + 8x^3 - 10x^2 + 2x - 12\)[/tex]