Answer :
To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9} \times 3^x \)[/tex], you can follow these steps:
1. Substitute the value of [tex]\( x \)[/tex]: We are looking for [tex]\( f(5) \)[/tex], so substitute [tex]\( x = 5 \)[/tex] into the function.
[tex]\[
f(5) = \frac{1}{9} \times 3^5
\][/tex]
2. Calculate [tex]\( 3^5 \)[/tex]:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Multiply by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
f(5) = \frac{1}{9} \times 243
\][/tex]
To compute this, divide 243 by 9:
[tex]\[
243 \div 9 = 27
\][/tex]
Therefore, the value of [tex]\( f(5) \)[/tex] is 27.
So, the answer is:
B. 27
1. Substitute the value of [tex]\( x \)[/tex]: We are looking for [tex]\( f(5) \)[/tex], so substitute [tex]\( x = 5 \)[/tex] into the function.
[tex]\[
f(5) = \frac{1}{9} \times 3^5
\][/tex]
2. Calculate [tex]\( 3^5 \)[/tex]:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Multiply by [tex]\(\frac{1}{9}\)[/tex]:
[tex]\[
f(5) = \frac{1}{9} \times 243
\][/tex]
To compute this, divide 243 by 9:
[tex]\[
243 \div 9 = 27
\][/tex]
Therefore, the value of [tex]\( f(5) \)[/tex] is 27.
So, the answer is:
B. 27