Answer :
To find [tex]\( f(5) \)[/tex] for the function [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex], follow these steps:
1. Substitute [tex]\( x = 5 \)[/tex] into the function. Your function is [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex].
2. Calculate [tex]\( (3)^5 \)[/tex]. This means raising 3 to the 5th power:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Divide the result by 9, as seen in the function:
[tex]\[
\frac{1}{9} \times 243 = \frac{243}{9} = 27
\][/tex]
Therefore, [tex]\( f(5) = 27 \)[/tex].
The correct answer is [tex]\(\boxed{27}\)[/tex].
1. Substitute [tex]\( x = 5 \)[/tex] into the function. Your function is [tex]\( f(x) = \frac{1}{9}(3)^x \)[/tex].
2. Calculate [tex]\( (3)^5 \)[/tex]. This means raising 3 to the 5th power:
[tex]\[
3^5 = 3 \times 3 \times 3 \times 3 \times 3 = 243
\][/tex]
3. Divide the result by 9, as seen in the function:
[tex]\[
\frac{1}{9} \times 243 = \frac{243}{9} = 27
\][/tex]
Therefore, [tex]\( f(5) = 27 \)[/tex].
The correct answer is [tex]\(\boxed{27}\)[/tex].