High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find an eigenvector of the matrix

\[
\begin{bmatrix}
25 & -188 & -60 \\
0 & -3 & 0 \\
10 & -70 & -25
\end{bmatrix}
\]

corresponding to the eigenvalue \(\lambda = -3\).

Answer :

The eigenvector corresponding to the eigenvalue λ = -3 for the given matrix is [1, 0, 1].

To find the eigenvector corresponding to the eigenvalue λ = -3, we first set up the equation (A - λI)v = 0, where A is the given matrix, λ is the eigenvalue, I is the identity matrix, and v is the eigenvector.

Substituting the given values, we get:

[25 - 188 -60] [v₁] [0]

[ 0 -3 0] * [v₂] = [0]

[10 - 70 -25] [v₃] [0]

Expanding this equation, we get three equations:

25v₁ - 188v₂ - 60v₃ = 0

-3v₂ = 0

10v₁ - 70v₂ - 25v₃ = 0

From equation (2), v₂ = 0.

Then, substituting v₂ = 0 into equations (1) and (3), we get:

25v₁ - 60v₃ = 0

10v₁ - 25v₃ = 0

Solving these two equations, we find v₁ = 3 and v₃ = 2. Therefore, the eigenvector corresponding to the eigenvalue λ = -3 is [3, 0, 2].

This means that when the given matrix is multiplied by this eigenvector, it scales by a factor of -3.

An eigenvector corresponding to the eigenvalue[tex]\(\lambda = -3\) of the given matrix is \(v = [ 4, -3, 2 ]^T\).[/tex]

Given matrix [tex]\(A\) is:[/tex]

[tex]\[A = \begin{bmatrix} 25 & -188 & -60 \\ 0 & -3 & 0 \\ 10 & -70 & -25 \end{bmatrix}\][/tex]

To find the eigenvector corresponding to the eigenvalue [tex]\(\lambda = -3\),[/tex] we need to solve the equation[tex]\(Av = \lambda v\), where \(v\)[/tex]is the eigenvector.

[tex]\(\lambda = -3\),[/tex]into the equation, we get:

[tex]\[\begin{bmatrix} 25 & -188 & -60 \\ 0 & -3 & 0 \\ 10 & -70 & -25 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = -3 \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}\][/tex]

This simplifies to the system of equations:

[tex]\[25v_1 - 188v_2 - 60v_3 = -3v_1\][/tex]

[tex]\[-3v_2 = -3v_2\][/tex]

[tex]\[10v_1 - 70v_2 - 25v_3 = -3v_3\][/tex]

Solving this system, we find[tex]\(v_1 = 4\), \(v_2 = -3\), and \(v_3 = 2\),[/tex]which gives us the eigenvector [tex]\(v = [ 4, -3, 2 ]^T\)[/tex].