High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find all the zeros of the function.

[tex] f(x) = x^4 - 21x^2 - 100 [/tex]

Answer :

To find all the zeros of the function [tex]\( f(x) = x^4 - 21x^2 - 100 \)[/tex], we'll follow a methodical approach.

1. Identify the Type of Polynomial: We have a polynomial of degree 4. The zeros of this polynomial can be real or complex numbers.

2. Substitution to Simplify the Equation: Recognize that the equation is quadratic in form with respect to [tex]\( x^2 \)[/tex]. Let's make a substitution where [tex]\( y = x^2 \)[/tex]. This changes the function from [tex]\( f(x) = x^4 - 21x^2 - 100 \)[/tex] to a quadratic form:
[tex]\[
f(y) = y^2 - 21y - 100
\][/tex]

3. Solve the Quadratic Equation: Use the quadratic formula to solve for [tex]\( y \)[/tex]:
[tex]\[
y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]
where [tex]\( a = 1 \)[/tex], [tex]\( b = -21 \)[/tex], and [tex]\( c = -100 \)[/tex].

[tex]\[
y = \frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 1 \times (-100)}}{2 \times 1}
\][/tex]
[tex]\[
y = \frac{21 \pm \sqrt{441 + 400}}{2}
\][/tex]
[tex]\[
y = \frac{21 \pm \sqrt{841}}{2}
\][/tex]
[tex]\[
y = \frac{21 \pm 29}{2}
\][/tex]

This gives us two solutions for [tex]\( y \)[/tex]:
[tex]\[
y = \frac{50}{2} = 25
\][/tex]
[tex]\[
y = \frac{-8}{2} = -4
\][/tex]

4. Convert Back to [tex]\( x \)[/tex]: Remember that [tex]\( y = x^2 \)[/tex], so now we solve for [tex]\( x \)[/tex].

For [tex]\( y = 25 \)[/tex]:
[tex]\[
x^2 = 25 \implies x = \pm 5
\][/tex]

For [tex]\( y = -4 \)[/tex]:
[tex]\[
x^2 = -4 \implies x = \pm 2i
\][/tex]

5. List All Zeros: The zeros of the polynomial [tex]\( f(x) = x^4 - 21x^2 - 100 \)[/tex] are:
[tex]\[
x = -5, 5, -2i, 2i
\][/tex]

And there you have it, the zeros are [tex]\(-5\)[/tex], [tex]\(5\)[/tex], [tex]\(-2i\)[/tex], and [tex]\(2i\)[/tex]. These include both real numbers and purely imaginary numbers, as expected for a degree 4 polynomial.