Answer :
Answer:
[tex]25\; {\rm kg}[/tex].
Explanation:
By Newton's Second Law of Motion, if the mass ([tex]m[/tex]) of an object stays constant, acceleration ([tex]a[/tex]) of the object would be proportional to the net force ([tex]F_{\text{net}}[/tex]) on the object:
[tex]\displaystyle a = \frac{F_{\text{net}}}{m}[/tex].
In this question, it is given that:
- Net force on the object is [tex]F_{\text{net}} = 200\; {\rm N}[/tex], and
- Acceleration of the object is [tex]a = 8\; {\rm m\cdot s^{-1}[/tex].
To find the mass ([tex]m[/tex]) of the object under these assumptions, rearrange the equation and solve for mass:
[tex]\displaystyle m = \frac{F_{\text{net}}}{a} = \frac{200\; {\rm N}}{8\; {\rm m\cdot s^{-2}}} = 25\; {\rm kg}[/tex].
(Note that [tex]1\; {\rm N} = 1\; {\rm kg\cdot m\cdot s^{-2}}[/tex].)
In other words, the mass of this object would be [tex]25\; {\rm kg}[/tex] to ensure that acceleration would be [tex]8\; {\rm m\cdot s^{-2}}[/tex] when net force on the object is [tex]200\; {\rm N}[/tex].