College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Find all the roots of [tex]$f(x) = x^4 - 2x^3 - 48x^2$[/tex]. Show all work for full credit.

Answer :

To find all the roots of the polynomial function [tex]\( f(x) = x^4 - 2x^3 - 48x^2 \)[/tex], we'll go through some algebraic steps.

### Step 1: Factor Out the Common Term

The given polynomial has a common factor of [tex]\( x^2 \)[/tex] in each term. We'll factor out [tex]\( x^2 \)[/tex]:

[tex]\[
f(x) = x^2(x^2 - 2x - 48)
\][/tex]

### Step 2: Solve the Simple Root

From the factored form, we have:

[tex]\[
x^2 = 0
\][/tex]

Solving [tex]\( x^2 = 0 \)[/tex] gives:

[tex]\[
x = 0
\][/tex]

This is one of the roots with multiplicity 2.

### Step 3: Solve the Quadratic Expression

Next, we need to solve the quadratic equation:

[tex]\[
x^2 - 2x - 48 = 0
\][/tex]

We can use the quadratic formula, which is expressed as:

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

For the quadratic equation [tex]\( x^2 - 2x - 48 = 0 \)[/tex], the coefficients are [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -48 \)[/tex].

Plugging these values into the quadratic formula:

[tex]\[
x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-48)}}{2 \cdot 1}
\][/tex]

[tex]\[
x = \frac{2 \pm \sqrt{4 + 192}}{2}
\][/tex]

[tex]\[
x = \frac{2 \pm \sqrt{196}}{2}
\][/tex]

[tex]\[
x = \frac{2 \pm 14}{2}
\][/tex]

This results in two potential solutions:

1. [tex]\( x = \frac{2 + 14}{2} = 8 \)[/tex]
2. [tex]\( x = \frac{2 - 14}{2} = -6 \)[/tex]

### Step 4: Compile the Roots

So, the roots of the polynomial [tex]\( f(x) = x^4 - 2x^3 - 48x^2 \)[/tex] are:

- [tex]\( x = 0 \)[/tex] with multiplicity 2
- [tex]\( x = 8 \)[/tex]
- [tex]\( x = -6 \)[/tex]

These three are all the roots of the polynomial given.