Answer :
To find all the roots of the polynomial function [tex]\( f(x) = x^4 - 2x^3 - 48x^2 \)[/tex], we'll go through some algebraic steps.
### Step 1: Factor Out the Common Term
The given polynomial has a common factor of [tex]\( x^2 \)[/tex] in each term. We'll factor out [tex]\( x^2 \)[/tex]:
[tex]\[
f(x) = x^2(x^2 - 2x - 48)
\][/tex]
### Step 2: Solve the Simple Root
From the factored form, we have:
[tex]\[
x^2 = 0
\][/tex]
Solving [tex]\( x^2 = 0 \)[/tex] gives:
[tex]\[
x = 0
\][/tex]
This is one of the roots with multiplicity 2.
### Step 3: Solve the Quadratic Expression
Next, we need to solve the quadratic equation:
[tex]\[
x^2 - 2x - 48 = 0
\][/tex]
We can use the quadratic formula, which is expressed as:
[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]
For the quadratic equation [tex]\( x^2 - 2x - 48 = 0 \)[/tex], the coefficients are [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -48 \)[/tex].
Plugging these values into the quadratic formula:
[tex]\[
x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-48)}}{2 \cdot 1}
\][/tex]
[tex]\[
x = \frac{2 \pm \sqrt{4 + 192}}{2}
\][/tex]
[tex]\[
x = \frac{2 \pm \sqrt{196}}{2}
\][/tex]
[tex]\[
x = \frac{2 \pm 14}{2}
\][/tex]
This results in two potential solutions:
1. [tex]\( x = \frac{2 + 14}{2} = 8 \)[/tex]
2. [tex]\( x = \frac{2 - 14}{2} = -6 \)[/tex]
### Step 4: Compile the Roots
So, the roots of the polynomial [tex]\( f(x) = x^4 - 2x^3 - 48x^2 \)[/tex] are:
- [tex]\( x = 0 \)[/tex] with multiplicity 2
- [tex]\( x = 8 \)[/tex]
- [tex]\( x = -6 \)[/tex]
These three are all the roots of the polynomial given.
### Step 1: Factor Out the Common Term
The given polynomial has a common factor of [tex]\( x^2 \)[/tex] in each term. We'll factor out [tex]\( x^2 \)[/tex]:
[tex]\[
f(x) = x^2(x^2 - 2x - 48)
\][/tex]
### Step 2: Solve the Simple Root
From the factored form, we have:
[tex]\[
x^2 = 0
\][/tex]
Solving [tex]\( x^2 = 0 \)[/tex] gives:
[tex]\[
x = 0
\][/tex]
This is one of the roots with multiplicity 2.
### Step 3: Solve the Quadratic Expression
Next, we need to solve the quadratic equation:
[tex]\[
x^2 - 2x - 48 = 0
\][/tex]
We can use the quadratic formula, which is expressed as:
[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]
For the quadratic equation [tex]\( x^2 - 2x - 48 = 0 \)[/tex], the coefficients are [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], and [tex]\( c = -48 \)[/tex].
Plugging these values into the quadratic formula:
[tex]\[
x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-48)}}{2 \cdot 1}
\][/tex]
[tex]\[
x = \frac{2 \pm \sqrt{4 + 192}}{2}
\][/tex]
[tex]\[
x = \frac{2 \pm \sqrt{196}}{2}
\][/tex]
[tex]\[
x = \frac{2 \pm 14}{2}
\][/tex]
This results in two potential solutions:
1. [tex]\( x = \frac{2 + 14}{2} = 8 \)[/tex]
2. [tex]\( x = \frac{2 - 14}{2} = -6 \)[/tex]
### Step 4: Compile the Roots
So, the roots of the polynomial [tex]\( f(x) = x^4 - 2x^3 - 48x^2 \)[/tex] are:
- [tex]\( x = 0 \)[/tex] with multiplicity 2
- [tex]\( x = 8 \)[/tex]
- [tex]\( x = -6 \)[/tex]
These three are all the roots of the polynomial given.